
A Similarity Measure
for the ALN Description Logic

Nicola Fanizzi and Claudia d’Amato

Dipartimento di Informatica, Università degli Studi di Bari
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Abstract. This work presents a similarity (and a derived dissimilarity)
measure for Description Logics that are the theoretical counterpart of the
standard representations for ontological knowledge. The focus is on the
definition of a similarity measure for ALN concept descriptions, based
both on the syntax and on the semantics of the descriptions elicited from
the current state of the world. An extension of the measure is proposed
for involving individuals and then for evaluating their (dis-)similarity,
which makes it suitable for several (inductive) tasks.

1 Assessing the Similarity in Concept Languages

In the Semantic Web perspective [3], similarity plays an important role in sev-
eral tasks, such as classification, clustering, retrieval and knowledge integration.
Nevertheless, we are still at an initial phase in the definition of measures for as-
sessing the similarity or the dissimilarity of concepts as described in the standard
ontology languages [5].

Various distance measures for concept representations have been proposed in
the literature (see a survey in [20]); they can be essentially categorized in three
different types. Path distance measures have been defined as a function of the
distance between terms in the hierarchical structure underlying an ontology [6].
The feature matching approach [24] uses both common and discriminant features
among concepts and/or concept instances to compute the semantic similarity.
Finally, there are methods founded on the information content [19, 10] where a
similarity measure for concepts within a hierarchy is defined in terms of the vari-
ation of the information content conveyed by the concepts and the one conveyed
by their immediate common super-concept. This is a measure of the variation
of the information from a description level to a more general one.

Other measures compute the similarity among concepts belonging to different
ontologies (e.g. see [25]). In [21] a similarity function determines similar classes
by using a matching process making use of synonym sets, semantic neighbor-
hood, and discriminating features that are classified into parts, functions, and
attributes (see a recent survey in [23]). However, for the moment, this topic is
beyond the scope of our work.

As pointed out in [5], most of the measures proposed so far are applicable to
the assessment of the similarity of atomic concepts (within a hierarchy) rather



than on composite ones or they refer to very simple ontologies, built only using
simple relations such as is-a and part-of (typical of lexical ontologies). Neverthe-
less, the standard ontology languages (e.g., OWL [18]) are founded in Description
Logics (henceforth DLs) since they borrow the typical DLs constructors. Thus,
it becomes necessary to investigate the similarity of more complex concept de-
scriptions expressed in DLs. However, it has been observed that the structure of
the descriptions becomes much less important when richer representations are
adopted, due to the expressive operators that can be employed.

An approach intended for information retrieval purposes on DLs knowledge
bases [16], aims at finding commonalities among concepts or among assertions,
employing the Least Common Subsumer (LCS) operator [7] that computes the
most specific generalization of the input concepts (with respect to subsumption).
Considered a knowledge base and a query concept, a filter mechanism selects
another concept from the knowledge base that is relevant for the query concept.
Then the LCS of the two concepts is computed and finally all concepts subsumed
by the LCS are returned.

Most of the measures defined in the cited works are suitable for very simple
languages and not for the composite descriptions that can be obtained using
the operators of DLs. Hence the semantics of these descriptions derives almost
straightforwardly from their simple structures. We decided to focus our attention
on measures which are essentially founded on semantics. Initially, we have defined
dissimilarity measures between concept descriptions that virtually may work for
any representation [9], being based exclusively on semantics. But this falls short
when individuals come into play. Indeed, in the tasks which represent the final
aim of our investigation on these measures, such as clustering, classification and
retrieval, it is necessary to compute distances between individuals and concepts
or between individuals. By recurring the notion of most specific concept (MSC)
of an individual with respect to an ABox [1], measures based both on the concept
structure and their semantics can be extended to such cases.

On the grounds of these ideas, we could define measures which are suitable
for composite DLs descriptions and in particular for ALC [8, 10]. These measures
elicit the underlying semantics by querying the knowledge base for assessing the
information content of concept descriptions with respect to the knowledge base,
as proposed also in [2]. In the perspective of defining a measure for more ex-
pressive ontology languages endowed with more constructors, with this work we
intend to investigate and extend these ideas to languages endowed with numeric
restrictions, starting from ALN .

The remainder of this paper is organized as follows. In Sect. 2 the repre-
sentation language ALN is presented. The similarity measure is illustrated and
discussed in Sect. 3, with the extension to the cases involving individuals. Final
remarks and possible applications and developments of the measure are exam-
ined in Sect. 4.



2 Background: The ALN Description Logic

ALN is a DLs language which allows for the expression of universal features
and numeric constraints [1]. It has been adopted because of the tractability
of the main related reasoning services [11]. Furthermore it has already been
adopted also in other frameworks for learning in hybrid representations such
as CARIN-ALN [22] or IDLP [13]. In order to keep this paper self-contained,
syntax and semantics for the reference representation is briefly recalled with the
characterization of the descriptions in terms of concept graphs.

2.1 Syntax and Semantics

In DLs, primitive concepts NC = {A, . . .} are interpreted as subsets of a cer-
tain domain of objects and primitive roles NR = {R, S, . . .} are interpreted as
binary relations on such a domain. In ALN , composite concept descriptions are
built using atomic concepts and primitive roles by means of the constructors
presented in Table 1. The meaning of such descriptions is defined by means of
an interpretation I = (∆I , ·I), where ∆I is the domain of the interpretation and
the functor ·I (the interpretation function) maps concept and role descriptions
to their extension: ∀C ∈ NC : CI ⊆ ∆I and ∀R ∈ NR : RI ⊆ ∆I ×∆I .

Table 1. Constructors and related interpretations for ALN .

Name Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅
primitive concept A AI ⊆ ∆

primitive negation ¬A ∆I \AI

concept conjunction C1 u C2 CI1 ∩ CI2
value restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}

at-most restriction ≤ n.R {x ∈ ∆I | |{y ∈ ∆I | (x, y) ∈ RI}| ≤ n}
at-least restriction ≥ n.R {x ∈ ∆I | |{y ∈ ∆I | (x, y) ∈ RI}| ≥ n}

A knowledge base K = 〈T ,A〉 contains two components: a T-box T and an
A-box A. T is a set of concept definitions C ≡ D, meaning CI = DI , where
C is the concept name and D is a description given in terms of the language
constructors. Differently from ILP, each (non primitive) concept has a single
definition. Moreover, the DLs definitions are assumed not to be recursive, i.e.
concepts cannot be defined in terms of themselves.

The A-box A contains extensional assertions on concepts and roles, e.g. C(a)
and R(a, b), meaning, respectively, that aI ∈ CI and (aI , bI) ∈ RI . Note that,
differently from the examples in the ILP setting, the concept description C can be
more complex than LP facts. For instance they could assert a universal property



of the an individual: (∀R.(A u ¬B))(a) that is, role R relates a exclusively to
individuals1 that are instances of the concept A u ¬B.

Example 2.1. Examples of ALN descriptions are 2:

Single ≡ Personu ≤ 0.marriedTo

Polygamist ≡ Person u ∀marriedTo.Person u ≥ 2.marriedTo

Bigamist ≡ Person u ∀marriedTo.Person u = 2.marriedTo

MalePolygamist ≡ Male u Person u ∀marriedTo.Person u ≥ 2.marriedTo

The notion of subsumption between DLs concept descriptions can be given
in terms of the interpretations defined above:

Definition 2.1 (subsumption). Given two concept descriptions C and D, C
subsumes D iff it holds that CI ⊇ DI for every interpretation I. This is de-
noted denoted by C w D. The induced equivalence relationship, denoted C ≡ D,
amounts to C w D and D w C.

Note that this notion is merely semantic and independent of the particular DLs
language adopted. It is easy to see that this definition also applies to the case of
role descriptions.

A related inference used in the following is instance checking, that is deciding
whether an individual is an instance of a concept [12, 1]. Conversely, it may be
necessary to solve the realization problem that requires finding the concepts
which an individual belongs to, especially the most specific one:

Definition 2.2. Given an ABox A and an individual a, the most specific con-
cept of a w.r.t. A is the concept C, denoted MSCA(a), such that A |= C(a) and
∀D such that A |= D(a), it holds: D w C.

2.2 Structural Characterizations

Semantically equivalent (yet syntactically different) descriptions can be given for
the same concept. However they can be reduced to a canonical form by means of
equivalence-preserving rewriting rules, e.g. ∀R.C1 u ∀R.C2 ≡ ∀R.(C1 u C2) (see
[17, 1]). The normal form employs the notation needed to access the different
parts (sub-descriptions) of a concept description C:

– prim(C) denotes the set of all (negated) concept names occurring at the top
level of the description C;

– valR(C) denotes conjunction of concepts C1u· · ·uCn in the value restriction
of role R, if any (otherwise valR(C) = >);

– minR(C) = max{n ∈ IN | C v (≥ n.R)} (always a finite number);
– maxR(C) = min{n ∈ IN | C v (≤ n.R)} (if unlimited then maxR(C) =∞).

1 It holds even in case no such R−filler is given.
2 Here (= n.R) is an abbreviation for (≤ n.R u ≥ n.R).



Definition 2.3 (ALN normal form). A concept description C is in ALN
normal form iff C = > or C = ⊥ or

C =
l

P∈prim(C)

P u
l

R∈NR

(∀R.CR u ≥n.R u ≤m.R)

where CR = valR(C), n =minR(C) and m = maxR(C).

The complexity of normalization is polynomial [1]. Besides, subsumption can
be checked in polynomial time too [11]. Note also that we are considering the
case of subsumption with respect to empty terminologies that suffices for our
purposes. Otherwise deciding this relationship may be computationally more
expensive.

Although subsumption between concept descriptions is merely a semantic re-
lationship, a more syntactic relationship can be found for a language of moderate
complexity like ALN that allows for a structural characterization of subsump-
tion [14].

Proposition 2.1 (subsumption in ALN ). Given two ALN concept descrip-
tions C and D in normal form, it holds that C w D iff all the following relations
hold between the sub-descriptions:

– prim(C) ⊆ prim(D)
– ∀R ∈ NR : valR(C) w valR(D)
– minR(C) ≤ minR(D) ∧maxR(C) ≥ maxR(D)

Hence subsumption checking is accordingly polynomial like O(n log n), where n
is the size of concept C. In the following we will refer to concepts descriptions
in normal form unless a different case is explicitly stated.

The tree-structured representation of concept description are defined as fol-
lows [17]:

Definition 2.4 (description tree). A description tree for a concept C in
ALN normal form is a tree G(C) = (V,E, v0, l) with root v0 where:

– each node v ∈ V is labelled with a finite set l(v) ⊆ NC ∪ {¬A | A ∈ NC} ∪
{≥ n.R | n ∈ IN, R ∈ NR} ∪ {≤ n.R | n ∈ IN, R ∈ NR}

– each edge in E is labelled with ∀R, where R ∈ NR

Proposition 2.2 (equivalence). An ALN description C is semantically equiv-
alent to an ALN description tree G(C) of size polynomial in the size of C, which
can be constructed in polynomial time.

Example 2.2. The concept description D ≡ ∀R.(P u ∀S.Q) u ∀S.(Q u ≤ 1S) is
equivalent to the tree depicted in Fig. 1.

Instance checking can be characterized in terms of homomorphisms between
trees and graphs standing for the ABoxes [17]:



G(D) :

Fig. 1. The concept D ≡ ∀R.(P u ∀S.Q) u ∀S.(Q u ≤ 1S) as a description tree.

Definition 2.5 (A-box description graph). Let A be an ALN A-box, a be
an individual occurring in A (a ∈ Ind(A)) and Ca =

d
C(a)∈A C. Let G(Ca) =

(Va, Ea, a, l) denote the description tree of Ca. G(A) = (V, E, l) is a A-box de-
scription graph with:

– V =
⋃

a∈Ind(A) Va

– E = {aRb | R(a, b) ∈ A} ∪⋃
a∈Ind(A) Ea

– l(v) = la(v) for all v ∈ Va

In a machine learning perspective, subsumption and instance checking can be
used to translate an individual of the domain (an instance of the target concept)
into a set of features suitable for propositional algorithms. Indeed, DLs that
allow for efficient subsumption procedures, such as ALN , are to be preferred.

3 Measure Definition

Using the structural notion of ALN normal form and the world-state as repre-
sented by the knowledge base, a similarity measure for the space of (equivalent)
descriptions L = (ALN |≡) can be defined as follows:

Definition 3.1 (ALN similarity measure). The function s : L × L 7→ [0, 1]
is inductively defined as follows. Given C,D ∈ L:

s(C, D) := λ

[
sP (prim(C), prim(D)) +

1
|NR|

∑

R∈NR

s(valR(C), valR(D)) +

1
|NR|

∑

R∈NR

sN ((minR(C),maxR(C)), (minR(D), maxR(D)))

]

where λ ∈]0, 1] (λ ≤ 1/3),

sP (prim(C), prim(D)) :=
|⋂PC∈prim(C) P IC ∩

⋂
QD∈prim(D) QID|

|⋂PC∈prim(C) P IC ∪
⋂

QD∈prim(D) QID|
and if min(MC ,MD) > max(mC ,mD) then

sN ((mC ,MC), (mD,MD)) :=
min(MC ,MD)−max(mC ,mD) + 1
max(MC , MD)−min(mC ,mD) + 1

else
sN ((mC ,MC), (mD,MD)) := 0



The rationale for the measure is the following. Due to the relative simplicity
of the language, the definition of operators working on ALN may be given
structurally, as seen in the Sect. 2. Thus, we define the measure by recursively
decomposing the normal form of the concept descriptions under comparison,
and measure, per each level and separately, the similarity of the sub-concepts:
primitive concepts, value restrictions, and number restrictions. We decided to
combine the contribution of each similarity at a given level supposing a fixed3

rate λ. Actually, in order to have the function s ranging over [0, 1], λ should be
less or equal to 1/3.

The similarity of the primitive concept sets is computed as the ratio of the
number of common individuals (belonging to both primitive conjuncts) with
respect to the number of the individuals belonging to either conjunct. For those
sub-concepts that are related through a role – say R – the similarity of the
concepts made up by the fillers is computed recursively by applying the measure
to valR(·). Finally, the similarity of the numeric restrictions is simply computed
as a measure of the overlap between the two intervals. Namely it is the ratio of
the amounts of individuals in the overlapping interval and those the larger one,
whose extremes are minimum and maximum. Note that some intervals may be
unlimited above: max = ∞. In this case we may approximate with an upper
limit N greater than |∆|+ 1.

Note that the baseline of this measure is the extension of primitive concepts.
Since such extensions cannot be known beforehand due to the Open World As-
sumption (OWA), we make an epistemic adjustment by assuming that it is ap-
proximated by retrieving4 the concept instances based on the current world-state
(i.e. according to the ABox A):

P I ← {a ∈ Ind(A) | I |=A P (a)}

The interpretation is not decisive because of the unique names assumption
(UNA) holding for the individual names. Then, we may say that the canoni-
cal interpretation5 [1] is considered for counting the retrieved individuals.

Furthermore, it can be foreseen that, per each level, before summing the three
measures assessed on the three parts, these figures be normalized. Moreover, a
lowering factor λR ∈ ]0, 1[ may be multiplied so to decrease the impact of the
sets of individuals related to the top-level ones through some role R.

Example 3.1 (computing the similarity). We show how the distance is practi-
cally computed on the ground of an ABox which can be supposed to have been
completed according to the TBox descriptions (e.g. Female v ¬Male).

3 Actually we could assign different rates to the similarity of primitive concepts and
numerical restrictions and the similarity of concepts for the role fillers.

4 Formally, given the ABox A and a concept C, the retrieval service returns the indi-
viduals a such that A |= C(a).

5 An interpretation where individual names occurring in the ABox stand for them-
selves.



Let such an ABox be

A =





Person(Meg),¬Male(Meg), hasChild(Meg,Bob), hasChild(Meg,Pat),
Person(Bob), Male(Bob), hasChild(Bob,Ann),
Person(Pat),Male(Pat), hasChild(Pat,Gwen),
Person(Gwen),¬Male(Gwen),
Person(Ann),¬Male(Ann), hasChild(Ann,Sue), marriedTo(Ann,Tom),
Person(Sue),¬Male(Sue),
Person(Tom),Male(Tom)





and let two descriptions be:

C ≡ Person u ∀marriedTo.Personu ≤ 1.hasChild

D ≡ Male u ∀marriedTo.(Person u ¬Male)u ≤ 2.hasChild

Their similarity in the knowledge base is computed as follows (let λ = 1/3):

s(C,D) = 1
3 · [sP (prim(C), prim(D)) + 1

2

∑
R∈NR

s(valR(C), valR(D)) +
+ 1

2

∑
R∈NR

sN ((minR(C), maxR(C)), (minR(D), maxR(D)))]

Now, we compute the three parts separately:

sP (prim(C), prim(D)) = sP ({Person}, {Male}) =

=
|{Meg, Bob, Pat, Gwen, Ann, Sue, Tom} ∩ {Bob, Pat, Tom}|
|{Meg, Bob, Pat, Gwen, Ann, Sue, Tom} ∪ {Bob, Pat, Tom}|

=
|{Bob, Pat, Tom}|

|{Meg, Bob, Pat, Gwen, Ann, Sue, Tom}| = 3/7

For the number restrictions on role hasChild:

sN ((mC , MC), (mD,MD)) = sN ((0, 1), (0, 2)) =

=
min(1, 2)−max(0, 0) + 1
max(1, 2)−min(0, 0) + 1

=
1− 0 + 1
2− 0 + 1

= 2/3

For the number restrictions on role marriedTo:

sN ((m′
C , M ′

C), (m′
D, M ′

D)) = 1

As regards the value restrictions on marriedTo, valmarriedTo(C) = Person and
valmarriedTo(D) = Person u ¬Male, hence:

s(Person,Person u ¬Male) = 1/3 · (sP ({Person}, {Person,¬Male}) + 1 + 1)

and

sP ({Person}, {Person,¬Male}) =
|{Meg, Bob, Pat, Gwen, Ann, Sue, Tom} ∩ {Meg, Gwen, Ann, Sue}|
|{Meg, Bob, Pat, Gwen, Ann, Sue, Tom} ∪ {Meg, Gwen, Ann, Sue}|

=
|{Meg, Gwen, Ann, Sue}|

|{Meg, Bob, Pat, Gwen, Ann, Sue, Tom}| = 4/7



As there are no value restrictions on hasChild, the similarity is maximal
(valhasChild(C) = valhasChild(D) = >).

Summing up:

s(C,D) =
1
3

[
3
7

+
1
2

(
1
3

(
4
7

+ 1 + 1
)

+
1
3

(1 + 1 + 1)
)

+
1
2

(
1 +

2
3

)]

=
1
3

[
3
7

+
13
14

+
5
6

]
=

92
126
' .7301

ut

3.1 Discussion

It can be proven that s is really a similarity measure. (or similarity function [4]),
according to the formal definition:

Definition 3.2 (similarity function). Let S be a space of elements. A simi-
larity measure f is a real-valued function defined on the set S × S that fulfills
the following properties:

1. f(a, b) ≥ 0 ∀a, b ∈ S (positive definiteness)
2. f(a, b) = f(b, a) ∀a, b ∈ S (symmetry)
3. ∀a, b ∈ S : f(a, b) ≤ f(a, a)

Proposition 3.1. The function s is a similarity measure for the space L.

Proof. We have to prove the three properties:

1. It is straightforward to see that s is positive definite since it is defined recur-
sively as a sum of non-negative values.

2. s is also symmetric because of the commutativity of the operations involved,
namely sum, minimum, and maximum (note that the value of sN in Def. 3.1
does not change by exchanging C with D).

3. We must show that ∀C,D ∈ L : s(C, D) ≤ s(C, C). This property can
be proved by structural induction on D. The base cases are those related
to primitive concepts and number restrictions, the inductive ones are those
related to value restrictions and conjunctions:
– if D is primitive then s(C, D) = λ[sP (prim(C), prim(D)) + s1 + s2] ≤

λ[
|
⋂

PC∈prim(C)
PIC∩

⋂
QD∈prim(D)

QID|
|
⋂

PC∈prim(C)
PI

C
∪
⋂

QD∈prim(D)
QI

D
| + 1 + 1] ≤

λ[
|
⋂

PC∈prim(C)
PIC∩

⋂
PC∈prim(C)

PIC |
|
⋂

PC∈prim(C)
PI

C
∪
⋂

PC∈prim(C)
PI

C
| + 1 + 1] = λ[1 + 1 + 1] = s(C, C).

– if D is a number restriction the proof is analogous to the previous one,
observing that
0 ≤ min(MC ,MD)−max(mC ,mD)

max(MC ,MD)−min(mC ,mD) ≤ min(MC ,MC)−max(mC ,mC)
max(MC ,MC)−min(mC ,mC) ≤ 1



– if D is a value restriction, then supposing by induction hypothesis that
the property holds for descriptions whose depth is less than D’s depth.
This is the case of the sub-concept valR(D).
Thus s(valR(C), valR(D)) ≤ s(valR(C), valR(C)) from which we may
conclude that the property holds.

– if D is a conjunction of two simpler concepts, say ∃D1, D2 ∈ L : D =
D1 uD2, then assuming by induction hypothesis that the property holds
for descriptions whose depth is less than D’s depth such as D1,2. This
means that ∀i ∈ {1, 2} : s(C, Di) ≤ s(C, C). It can be proven that ∀i ∈
{1, 2} : s(C, D) ≤ s(C,Di). Hence the property holds.

ut
From a computational point of view, in order to control the computational

cost of these functions, we may assume that the retrieval of the primitive concepts
may be computed beforehand on the ground of the current knowledge base and
then the similarity measure (or a derived dissimilarity measure) can be computed
bottom-up through a procedure6 based on dynamic programming.

3.2 Dissimilarity Measures Involving Individuals

Many machine learning algorithms (especially bottom-up ones) often require
measuring the similarity between individuals. Also top-down ones are often based
on a notion of coverage (instance checking) assessing the likelihood that an indi-
vidual may belong to a concept by means of logic inferences or (somehow more
simply) employing a notion of similarity between an individual and a concept
description.

A dissimilarity measure can be easily derived from s in the following way:

Definition 3.3 (ALN dissimilarity measure). The dissimilarity function
d : L × L 7→ [0, 1] is defined as follows. Given C,D ∈ L:

d(C, D) = 1− s(C, D)

The notion of Most Specific Concept has been exploited for lifting individ-
uals to the concept level [7]. On performing experiments related to a similarity
measure exclusively based on concept extensions [9], we noticed that, resorting
to the MSC, for adapting that measure to the individual to concept case, just
falls short: indeed the MSCs may be too specific and unable to include other
(similar) individuals in their extensions.

By comparing concept descriptions reduced to the normal form, we have given
a more structural definition of dissimilarity. However, since MSCs are computed
from the same ABox assertions, reflecting the current knowledge state, this guar-
antees that structurally similar representations will be obtained for semantically
similar concepts. In fact, in this way, all equivalent concepts written using the
6 This procedure has been implemented for instance-based learning algorithms as well

as the measures proposed in [8, 10].



same subconcepts but using different descriptions, can be expressed in the same
form.

Let us recall that, given the ABox, it is possible to compute the most specific
concept of an individual a w.r.t. the ABox, MSC(a) (see Def. 2.2) or at least
its approximation MSCk(a) up to a certain description depth k. In the following
we suppose to have fixed this k to the depth of the ABox, as shown in [16]. In
some cases these are equivalent concepts but in general we have that MSCk(a) w
MSC(a).

Given two individuals a and b in the ABox, we consider MSCk(a) and MSCk(b)
(supposed in normal form). Now, in order to assess the dissimilarity between the
individuals, the d measure can be applied to these concept descriptions, as fol-
lows:

d(a, b) := d(MSCk(a),MSCk(b))

Analogously, the dissimilarity value between an individual a and a concept de-
scription C can be computed by determining the (approximation of the) MSC
of the individual and then applying the dissimilarity measure:

∀a : d(a, C) := d(MSCk(a), C)

These cases may turn out to be particularly handy in several tasks, namely
both in inductive reasoning (construction, repairing of knowledge bases) and in
information retrieval.

4 Final Remarks

Similarity and distance measures turn out to be useful in several tasks such
as classification, case-based reasoning, clustering, etc. A novel (dis)similarity
measure has been introduced, based on the information on concepts and roles as
it can be approximated on the grounds of the underlying semantics of the ABox.

We have also shown how to apply this function to measuring the (dis)similarity
between individuals and also between individual-concept (useful in knowledge
discovery tasks). In particular, defining a measure, that is applicable for compar-
ing both concepts and individuals, is suitable for agglomerative and divisional
clustering. A further investigation will concern the derivation of a distance mea-
sure, which amounts to finding a measure that fulfils the triangular property.

The presented measure can be refined introducing a weighting factor, useful
for decreasing the impact of the dissimilarity between nested sub-concepts in the
descriptions on the determination of the overall value.

Another natural extension may concern the definition of dissimilarity mea-
sures in more expressive languages. For example, a normal form for ALCN can
be obtained based on those for ALN and ALC. Then, by exploiting the notion
of existential mappings [15], already used for computing the LCS in ALCN , the
measure presented in this paper may be extended to the richer DL.



Kernels are another means to express the similarity in some unknown feature
space. We are working at the definition of kernel functions on DLs representa-
tions, thus allowing the exploitation of the efficiency of kernel methods (e.g.
support vector machines) in a relational setting.
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