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Abstract. The paper presents OntoDLV a system based on an extension
of Disjunctive Logic Programming (DLP) which combines the expres-
sive power of DLP with the modeling capabilities of the object-oriented
languages. In particular, the OntoDLV language supports the most im-
portant object-oriented constructs including classes, objects, (multiple)
inheritance, and types.
OntoDLV is built on top of DLV (a state-of-the art DLP system), and
provides a graphical user interface that allows to specify, update, browse,
query, and reason on knowledge bases. Two strong points of the system
are the powerful type-checking mechanism, and the advanced interface
for visual querying.

1 Introduction

Disjunctive Logic Programming under the Stable Model Semantics [1] (DLP) is
an expressive logic programming language, which has been proposed in the area
of nonmonotonic reasoning and logic programming.

The high expressive power of DLP [2] can be profitably exploited when one
has to deal with problems of high complexity, and this makes DLP an ad-
vanced formalism for Knowledge Representation and commonsense Reasoning
(KR&R)[1].

Moreover, the availability of a couple of efficient DLP systems, like DLV [3],
GnT [4] and, more recently, the disjunctive version of Cmodels [5] make DLP a
powerful tool for developing advanced knowledge-based applications [6, 7].

Despite its high expressiveness, there are several problems that DLP can-
not encode in a natural way. For instance, it misses constructs for representing
complex real-world entities[8], like classes, objects, compound objects, and tax-
onomies. Moreover, DLP systems are missing tools for supporting the program-
mers, like type-checkers and easy-to-use graphical environments, to manage the
large and complex domains to be dealt with in real-world applications.

The recent applications of DLP in the emerging areas of Knowledge Manage-
ment (KM) and Information Integration [9] have evidenced the practical need
to enhance DLP languages and systems to overcome the above drawbacks.

This paper describes the OntoDLV system, a first step towards overcoming
the above limitations. It is a cross-platform development environment for knowl-
edge modeling and advanced knowledge-based reasoning. The OntoDLV system
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allows for the development of complex applications and allows one to perform
advanced reasoning tasks in a user friendly visual environment. The OntoDLV
system seamlessly integrates the DLV system [3] exploiting the power of a stable
and efficient DLP solver.

A strong point of the system is its powerful language, extending DLP by
object-oriented features. In particular, the language includes, besides the con-
cept of relation, the object-oriented notions of class, object (class instance),
object-identity, complex object, (multiple) inheritance, and the concept
of modular programming by means of reasoning modules.

A class can be thought of as a collection of individuals that belong together
because they share some features. An individual, or object, is any identifiable
entity in the universe of discourse. Objects, also called class instances, are un-
ambiguously identified by their object-identifier (oid) and belong to a class. A
class is defined by a name (which is unique) and an ordered list of attributes,
identifying the properties of its instances. Each attribute has a name and a type,
which is, in truth, a class. This allows for the specification of complex objects
(objects made of other objects).

Classes can be organized in a specialization hierarchy (or data-type taxon-
omy) using the built-in is-a relation (multiple inheritance).

Relationships among objects are represented by means of relations, which,
like classes, are defined by a (unique) name and an ordered list of attributes
(with name and type)1.

Importantly, OntoDLP supports two kind of classes and relations: (base)
classes and (base) relations, corresponding to basic facts (that can be stored
in a database); and derived classes and derived relations corresponding to facts
that can be inferred by logic programs.

As in DLP, logic programs are sets of logic rules and constraints. However,
OntoDLP extends the definition of logic atom by introducing class and relation
predicates, and complex terms (allowing for a direct access to object properties).
In this way, the OntoDLP rules merge, in a simple and natural way, the declara-
tive style of logic programming with the navigational style of the object-oriented
systems. In addition, OntoDLP logic programs are organized in reasoning mod-
ules, taking advantage of the benefits of modular programming.

Noteworthy, the strongly-typed nature of OntoDLP allowed for the imple-
mentation of a number of type-checking routines that verify the correctness of
a specification on the fly, resulting in an help for the programmer.

Moreover, OntoDLV offers several important facilities driving the develop-
ment of both the knowledge base and the reasoning modules. Using OntoDLV,
developers and domain experts can create, edit, navigate and query object-
oriented knowledge bases by an easy-to-use visual environment, enriched by
a graphic query interface à la QBE.

In short, the contribution of the paper is twofold:

– We describe a new language, named OntoDLP, for Knowledge Representa-
tion and Reasoning, extending DLP with relevant constructs of the object-

1 Note that, unlike objects, relation instances are not identified by means of oid’s.
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oriented paradigm, like Classes, Types, Objects and Inheritance. We illus-
trate syntax, semantics, and knowledge modeling features of OntoDLP by
examples.

– We design and implement a system supporting OntoDLP, named OntoDLV.
The system offers all features of OntoDLP, it provides a user friendly Graph-
ical User Interface, and a powerful type checking mechanism, which supports
the user in a fast development of error-free ontologies. OntoDLV is endowed
also with a visual query interface, allowing to combine navigation and query-
ing for powerful information extraction.

The system is already employed in practice in a couple of applications for
text classification and information extraction (see Section 5).

2 The OntoDLP Language

The role of a knowledge representation language is to capture domain knowledge
and provide a commonly agreed upon understanding of a domain. The specifica-
tion of a common vocabulary defining the meaning of terms and their relations,
usually modeled by using primitives such as concepts organized in taxonomy,
relations, and axioms is commonly called an ontology.

In this section we describe the OntoDLP language, a knowledge representa-
tion and reasoning language which allows one to define and to reason on ontolo-
gies.

An ontology in OntoDLP can be specified by means of classes, and relations.
Classes are organized in an inheritance (ISA) hierarchy, while the properties to be
respected are expressed through suitable axioms, whose satisfaction guarantees
the consistency of the ontology. Reasoning modules allow us to express rich forms
of reasoning on the ontologies.

For a better understanding, we will describe each construct in a separate
section and we will exploit an example (the living being ontology), which will be
built throughout the whole section, thus illustrating the features of the language.

It is worth noting that OntoDLP is actually an extension of Disjunctive Logic
Programming (DLP)2, which has been enriched by concepts from the object-
oriented paradigm; from now on, we assume the reader to be familiar with DLP
syntax and semantics. For a comprehensive introduction to DLP the reader can
refer to [1, 11].

2.1 Classes

One of the most powerful abstraction mechanism for the representation of a
knowledge domain is classification, i.e. the process of identifying object categories
(classes), on the basis of the observation of common properties (class attributes).

A class can be thought of as a collection of individuals that belong together
because they share some properties.

2 We actually use DLP with aggregates functions [10].
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Suppose we want to model the living being domain, and we have identified
four classes of individuals: persons, animals, food, and places. Those classes can
be defined in OntoDLP as follows:

class person. class animal. class food. class place.

The simplest way to declare a class is, hence, to specify the class name, preceded
by the keyword class. However, when we recognize a class in a knowledge do-
main, we also identify a number of properties or attributes which are defined for
all the individuals belonging to that class.

A class attribute can be specified in OntoDLP by means of a pair (attribute-
name : attribute-type), where attribute-name is the name of the property and
attribute-type is the class the attribute belongs to.

For instance, we can enrich the specification of the class person by the defini-
tion of some properties which are common to each person: the name, age, father,
mother, and birthplace.

Note that many properties can be represented by using alphanumeric strings
and numbers. To this end, OntoDLP features the built-in classes string and
integer, respectively representing the class of all alphanumeric strings and the
class of non-negative numbers.

Thus, the class person can be better modeled as follows:

class person( name:string, age:integer, father:person, mother:person,
birthplace:place ).

Note that this definition is “recursive” (both father and mother are of type
person). Moreover, the possibility of specifying user-defined classes as attribute
types allows for the definition of complex objects, i.e. objects made of other
objects. It is worth noting that attributes model the properties that must be
present in all class instances; properties that might be present or not should be
modeled, as will be shown later, by using relations3.

In the same way, we could enrich the specification of the other above men-
tioned classes in our domain by adding some attributes. For instance, we could
have a name for each place, food and animal, an age for each animal etc.

class place(name:string).

class food(name:string, origin:place).

class animal(name:string, age:integer, speed:integer).

Thus, each class definition contains a set of attributes, which is called class
scheme. The class scheme represents, somehow, the “structure” of (the data we
have about) the individuals belonging to a class.

Next section illustrates how we represent individuals in OntoDLP.

3 In other words, an attribute (n : k) of a class c is a total function from c to k; while
partial functions from c to k can be represented by a binary relation on (c, k).
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2.2 Objects

Domains contain individuals which are called objects or instances.

Each individual in OntoDLP belongs to a class and is univocally identified
by using a constant called object identifier (oid) or surrogate.

Objects are declared by asserting a special kind of logic facts (asserting that
a given instance belongs to a class). For example, we declare that “Rome” is an
instance of the class place as follows:

rome : place(name:”Rome”).

Note that, when we declare an instance, we immediately give an oid to the
instance (in this case is rome), and a value to the attributes (in this case the
name is the string “Rome”).

The oid rome can now be used to refer to that place (e.g. when we have to fill
an attribute of another object). Suppose that, in the living being domain, there
is a person (i.e. an instance of the class person) whose name is “John”. John is
34 years old, lives in Rome, his father and his mother are identified by jack and
ann respectively. This instance can be declared as follows:

john:person(name:”John”, age:34, father:jack, mother:ann, birthplace:rome).

In this case, “john” is the object identifier of this instance, while “jack”,
“ann”, and “rome” are suitable oids respectively filling the attributes father,
mother (both of type person) and birthplace (of type place).

The language semantics (and our implementation) guarantees the referential
integrity, both jack, ann and rome have to exist when john is declared.

2.3 Inheritance

Another relevant abstraction tool in the the field of knowledge representation
is the specialization/generalization mechanism, allowing to organize concepts
of a knowledge domain in a taxonomy. This is obtained in the object-oriented
languages by using the well-known mechanism of inheritance.

Inheritance is supported by OntoDLP, and class hierarchies can be specified
by using the special binary relation isa.

For instance, one can exploit inheritance to represent some special categories
of persons, like students and employees, having some extra attribute, like a school,
a company etc. This can be done in OntoDLP as follows:

class student isa {person} ( code:string, school:string tutor:person ).

class employee isa {person}( salary:integer, skill:string, company:string,
tutor:employee ).
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In this case, we have that person is a more generic concept or superclass and
both student and employee are a specialization (or subclass) of person. Moreover,
an instance of student will have both the attributes: code, school, and tutor,
which are defined locally, and the attributes: name, age, father, mother, and
birthplace, which are defined in person. We say that the latter are “inherited”
from the superclass person. An analogous consideration can be made for the
attributes of employee which will be name, age, father, mother, birthplace, salary,
skill, company, and tutor.

An important (and useful) consequence of this declaration is that each proper
instance of both employee and student will also be automatically considered an
instance of person (the opposite does not hold!).

For example, consider the following two instances of student and employee:

al:student(name:”Alfred”, age:20, father:jack, mother:betty, birthplace:rome,
code:”100”, school:”Cambridge”, tutor:hanna).

jack:employee(name:”Jack”, age:54, father:jim, mother:mary, birthplace:rome,
salary:1000, skill:”Java programmer”, company:”SUN”, tutor:betty).

They are automatically considered also instances of person as follows:

al:person(name:”Alfred”, age:20, father:jack, mother:betty, birthplace:rome).
jack:person(name:”Jack”, age:54, father:jim, mother:mary, birthplace:rome).

Note that it is not necessary to assert the above two instances, both al and
jack are automatically considered instances of person.

In OntoDLP there is no limitation on the number of superclasses (i.e. multiple
inheritance is allowed). Thus, a class can be a specialization of any number of
classes, and, consequently, it inherits all the attributes of its superclasses.

As an example, consider the following declaration:

class stud-emp isa {student, employee}( workload:integer ).

So, the class stud-emp (exploiting multiple inheritance) is a subclass of both
student and employee. Note that, the attribute tutor is defined in both student,
with type student, and employee with type employee4.

In this case, the attribute tutor will be taken only once in the scheme of
stud emp, but it is not intuitive what type will be taken for it.

This tricky situation is dealt with by applying a simple criterion. The type
of the “conflicting” attribute tutor will be employee, which is the “intersection”
(somehow in the sense of instance sharing) of the two types of the tutor attribute
(person and employee). This choice is reasonably safe, and guarantees that all
instances of stud emp are correct instances of both student and employee 5.

4 We acknowledge that is quite unnatural that the tutor of a student employee is
an employee. Actually we made this choice to show an important feature of the
language.

5 The criterion adopted in OntoDLP for solving type conflicts due to multiple inheri-
tance was introduced with the COMPLEX language, see [12]
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We complete the description of inheritance recalling that there is also another
built-in class in OntoDLP, which is the superclass of all the other classes and is
called object (or ⊤).

2.4 Relations

A fundamental feature of a knowledge representation language is the capability
to express relationships among the objects of a domain. This can be done in
OntoDLP by means of Relations.

Relations are declared like classes: the keyword relation (instead of class)
precedes a list of attributes.

As an example, the relation friend, which models the friendship between two
persons, and the relation lived containing information about the places where a
person lived can be declared as follows:

relation friend(pers1:person, pers2:person).
relation lived(per:person, pla:place, period:string).

Like classes, the set of attributes of a relation is called scheme while the
cardinality of the scheme is called arity. The scheme of a relation defines the
structure of its tuples (this term is borrowed from database terminology).

In particular, to assert that a person, say “john”, lived in Rome for two years
we write the following logic fact:

lived(per:john, pla:rome, period:”two years”).

We call this assertion a tuple of the relation lived. Thus, tuples of a relation
are specified similarly to class instances, that is, by asserting a set of facts (but
tuples are not equipped with an oid).

2.5 Derived Classes and Derived Relations

The notions of class and relation introduced above correspond, from a data-base
point of view, to the the extensional part of the OntoDLP language. In fact, their
instances and tuples are defined explicitly asserting some logic facts. However,
there are many cases in which some property or some class of individuals can be
“derived” (or inferred) from the information already stated in an ontology. In
the database world, the views allows to specify this this kind of knowledge which
is usually called “intensional”. In OntoDLP there are two different “intensional”
constructs: derived classes and derived relations.

As an example, suppose we want to define the class of peoples which are less
than 21 years old and have less than two friends (we name this class youngAnd-
Shy). Note that, this information is implicitly present in the ontology, and the
“intensional” class youngAndShy can be defined as follows:

derived class youngAndShy(friendsNumber: integer) {
X : youngAndShy(friendsNumber : N) :− X : person(age : Age),

Age < 21, #count{F : friend(pers1 : X, pers2 : F )} < 2. }
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Note that, in this case the instances of the class youngAndShy are “borrowed”
from the class person, and are inferred by using a logic rule.

In general, the derived classes neither have proper instances nor proper oid’s
(they group already defined objects), and cannot be organized in taxonomies by
using the isa relation.

In an analogous way we specify derived relations. As an example, consider
the derived relations ancestor:

relation ancestor(anc:person,disc:person). {
ancestor(anc : A, disc : X) :− X : person(father : A).
ancestor(anc : A, disc : X) :− X : person(mother : A).
ancestor(anc : A, disc : X) :− X : person(father : Y ),

ancestor(anc : A, disc : Y ).
ancestor(anc : A, disc : X) :− X : person(mother : Y ),

ancestor(anc : A, disc : Y ). }

The above definition states that A is an ancestor of X if: (i) A is either the
father of X or the mother of X; or (ii) A is either an ancestor of the father of
X or an ancestor of the mother of X.

Note that this definition is recursive (it is a kind of transitive closure).
In general, derived classes and derived relations are both more natural and

more expressive than relational database views, in-fact they allow the use of
the navigational style of object-oriented programming combined with a more
powerful language that allows recursion and negation as failure6.

2.6 Axioms and Consistency

The structural representation of a knowledge domain is obtained in OntoDLP
by specifying classes and relations. In general, this information is not enough
to obtain a correct description of the domain. Often, it is necessary to impose
constraints asserting additional conditions which hold in the domain.

These assertions are modeled in OntoDLP by means of axioms.
An axiom is a consistency-control construct modeling sentences that are al-

ways true (at least, if everything we specified is correct). They can be used for
several purposes, such as constraining the information contained in the ontology
and verifying its correctness.

As an example suppose we declared the relation colleague, which associates
persons working together in a company, as follows:

relation colleague (emp1:employee, emp2:employee).

It is clear that the information about the company of an employee (recall
that there is an attribute company in the scheme of the class employee) must be
consistent with the information contained in the tuples of the relation colleague.
To enforce this property we assert the following axioms:

6 It is worth noting that the programs which define derived classes and derived rela-
tions must be normal and stratified (see e.g. [3]).
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(1) ::− colleague(emp1 : X1, emp2 : X2), not colleague(emp1 : X2, emp2 : X1)
(2) ::− colleague(emp1 : X1, emp2 : X2),

X1 : employee(company : C), not X2 : employee(company : C).

The above axioms states that, (1) the relation colleague is symmetric, and
(2) if two persons are colleagues and the first one works for a company, then also
the second one works for the same company.

Note that OntoDLP axioms do not derive new knowledge, but they are only
used to model sentences that must be always true, like integrity constraints7.

Observe that axioms are syntactically distinguished by constraints because
they are declared by using the symbol ::− instead of :− .

The usefulness of axioms is rather clear, as they allows one to enforce the
consistency of the specified ontology.

Consequently, if an axiom is violated, then we say that the ontology is in-
consistent (that is, it contains information which is, somehow, contradictory or
not compliant with the intended perception of the domain).

2.7 Reasoning modules

Given an ontology, it can be very useful to reason about the data it describes.
Reasoning modules are the language components endowing OntoDLP with

powerful reasoning capabilities to OntoDLP. Basically, a reasoning module is
a disjunctive logic program conceived to reason about the data described in
an ontology. Reasoning modules in OntoDLP are identified by a name and are
defined by a set of (possibly disjunctive) logic rules and integrity constraints.

Syntactically, the name of the module is preceded by the keyword module
while the logic rules are enclosed in curly brackets (this allows one to collect all
the rules constituting the encoding of a problem in a unique definition identified
by a name). Moreover, it is possible to define derived predicates having a “local
scope” without giving a scheme definition. This gives the possibility to exploit
a form of modular programming, because it becomes possible to organize logic
programs in a simple kind of library.

We now show an example demonstrating that the reasoning power of On-
toDLP can be exploited for solving complex real-world problems.

Given our living being ontology, we want to compute a project team satisfying
the following restrictions (i.e. we want to solve an instance of team building
problem):

– the project team has to be constituted of a fixed number of employees;
– the availability of a given number of different skills has to be ensured inside

the team;
– the sum of the salaries of the team members cannot exceed a given budget;
– the salary of each employee in the team cannot exceed a certain value.

7 The difference between axioms and constraints is that axioms are specifically con-
ceived to work with the knowledge contained in an ontology, while constraints are
conceived in order to enforce some property in a logic program.
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Suppose that the ontology contains the class project whose instances specify
the information about the project requirements, i.e. the number of team employ-
ees, the number of different skills required in the project, the available budget,
the maximum salary of each team employee:

class project(numEmp : integer, numSk : integer, budget : integer,

maxSal : integer).

We can solve the above team building problem with the following module:

module(teamBuilding){

(r) inTeam(E,P ) ∨ outTeam(E,P ) :− E : employee(), P : project().

(c1) :− P : project(numEmp : N), not #count{E : inTeam(E,P )} = N.

(c2) :− P : project(numSk : S), not #count{Sk : E : employee(skill : Sk),
inTeam(E,P )} ≥ S.

(c3) :− P : project(budget : B), not #sum{Sa,E : E : employee(salary : Sa),
inTeam(E,P )} ≤ B.

(c4) :− P : project(maxSal : M), not #max{Sa : E : employee(salary : Sa),
inTeam(E,P )} ≤ M.

}

Intuitively, the disjunctive rule r guesses whether an employee is included in
the team or not, generating the search space, while the constraints c1, c2, c3, and
c4 model the project requirements, cutting off the solutions that do not satisfy
the constraints.

Concluding, reasoning modules isolate a set of logic rules and constraints con-
ceptually related, they exploit the expressive power of disjunctive logic program-
ming allowing to perform complex reasoning tasks on the information encoded
in an ontology.

2.8 Querying

An important feature of the language is the possibility of asking queries in order
to extract knowledge contained in the ontology, but not directly expressed. As in
DLP a query can be expressed by a conjunction of atoms, which, in OntoDLP,
can also contain complex terms.

As an example, we can ask for the list of persons having a father who is born
in Rome as follows:

X:person(father:person(birthplace:place(name: “Rome”)))?

Note that we are not obliged to specify all attributes; rather we can indicate
only the relevant ones for querying. In general, we can use in a query both the
predicates defined in the ontology and the derived predicates in the reasoning
modules.
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3 The OntoDLV System

OntoDLV is a complete tool that allows one to specify, navigate, query and
perform reasoning on OntoDLP ontologies. We refrain describing the implemen-
tation details of OntoDLV in this paper8. Rather, we illustrate the overall On-
toDLV architecture, and present the main features of the system by describing
the main components of the graphical user interface of OntoDLV.

3.1 System Architecture

The system architecture of OntoDLV, depicted in Figure 1, is composed of
eight modules, namely, GUI, Parser, Data Handler, Type Checker, Intelligent
Rewriter, Output Handler and Message Handler, DLV, and two libraries: Lucene
and, JGraph.

JGRAPH

GUI

MESSAGE 
HANDLER

DLV

LUCENE

OUTPUT 
HANDLER

INTELLIGENT 
REWRITER

DATA
HANDLER

PARSER

TYPE
CHECKER

File System

USER

Fig. 1. The OntoDLV architecture

The user exploits the system through an easy-to-use visual environment
called GUI (Graphical User Interface). The GUI combines a number of spe-
cialized visual tools for authoring, browsing and querying a OntoDLP ontology.
In particular, the GUI features a graph-based ontology viewer and a graphical
query environment, which are based on JGraph, an open-source library.

The Parser has the job to analyze and load the content of a OntoDLP text file
in the data structures supplied by the Data Handler. The Data Handler provides
all the methods needed to access and manipulate the ontology components.
In particular, data indexing and full-text search are based on the open-source
library Lucene. The admissibility of an ontology is ensured by the Type Checker
module which implements a number of type checking routines. The Intelligent
Rewriter module translates OntoDLP ontologies, reasoning modules and queries
to an equivalent Disjunctive Logic Program which runs on the DLV system. The
Intelligent Rewriter features a number of optimization and caching techniques
in order to reduce the time used by interacting with DLV. Reasoning results

8 For a better description of the implementation and for an in-depth specification of
the rewriting procedure see [15].
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and possible error messages are handled by the Output Handler and by the
Message Handler modules respectively, and are displayed by the user interface
accordingly.

3.2 Implementation and Usage

The OntoDLV system has been implemented in Java and is based on an ef-
ficient and optimized implementation of the rewriting module. Moreover, the
OntoDLV system exploits the DLV system, a state-of-the-art DLP solver that
has been shown to perform efficiently on both hard and “easy” (having polyno-
mial complexity) problems9.

The DLV system is a highly portable software written in ISO C++, avail-
able for various operating systems (UNIX, Mac OSX and Windows). Thus, the
OntoDLV system runs under a variety of operating systems.

The OntoDLV system was designed to be simple for a novice to understand
and use, and powerful enough to support experienced users.

The GUI presents several panels offering access to several facilities combining
the browsing environment with the editing environment.

The class/subclass hierarchy is displayed both in an indented text and a
graph-based form.

The user can browse the ontology by double-clicking the items in the panels.
The structure of each ontology entity (classes, relations, and instances) can be
displayed in the middle of the screen by switching among several tabbed panels.

In the editing phase, the user enters the domain information by filling in
the blanks of intuitive forms and selecting items from lists (exploiting an simple
mechanism based on drag-and-drop). An up-to-date list of messages informs the
user about the occurrence of errors (e.g. type checking messages, etc.) in the
ontology under development. When the user clicks on an error message item the
system promptly shows the entity involved in it.

Reasoning and querying can be performed by selecting the appropriate panel.
The interface also allows the reasoning modality (both brave reasoning and cau-
tious reasoning are supported) to be selected, and the reasoning modules needed
to solve the specified reasoning task to be enabled/disabled. Importantly, queries
can also be created by exploiting both a text-editing tool and a visual querying
interface à la QBE which allows one to write queries without wondering about the
syntax in a drag-and-drop-based environment. A sort of “reverse-engineering”
procedure allows to smoothly switch between the text editing and the visual
editing environment.

Finally, query results are presented to the user in an appealing way, while
details about the interaction with DLV are hidden by the system.

The OntoDLV system, together with the system manual describing all the
features available, can be downloaded at http://www.mat.unical.it/ontodlv.

9 This feature is crucial for the implementation of the OntoDLV system, in fact on-
tologies are translated in an equivalent DLP program which is solved by DLV in
polynomial time (under data complexity)
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4 Related Work

A number of languages and systems somehow related to OntoDLP have been
proposed in the literature. The most closely related system is COMPLEX [12],
supporting the Complex-Datalog language, an extension of (non-disjunctive)
Datalog with some concepts from the object-oriented paradigm. OntoDLV and
COMPLEX share a similar object-oriented model, however the language of the
latter is less expressive than OntoDLP. In fact, COMPLEX supports normal
(non-disjunctive) stratified programs only (its expressive power is confined to
P ), which are strictly less expressive than OntoDLP language expressing even
ΣP

2 -complete properties [2].

Another popular logic-based object-oriented language is F-Logic [13], imple-
mented in the Flora-2 system [14], which includes most aspects of object-oriented
and frame-based languages. F-logic was conceived as a language for intelligent
information systems based on the logic programming paradigm. Comparing On-
toDLP with F-Logic, we note that the latter has a richer set of object oriented
features (e.g. class methods, and multi-valued attributes), but it misses some im-
portant constructs of OntoDLP like disjunctive rules, which increase the knowl-
edge modeling ability of the language. Concerning system-related aspects, an
important advantage of OntoDLV (w.r.t. Flora-2) is the presence of a graphical
development environment, which simplifies the interaction with OntoDLV for
both the end user and the knowledge engineer.

A couple of other formalisms for specifying ontologies have been recently
proposed by W3C, namely, RDF/RDFS and OWL. The Resource Description
Framework (RDF) [16] is a knowledge representation language for the Semantic
Web. It is a simple assertional logical language which allows for the specification
of binary properties expressing that a resource (entity in the Semantic Web) is
related to another entity or to a value. RDF has been extended with a basic type
system; the resulting language is called RDF Vocabulary Description Language
(RDF Schema or RDFS). Basically, RDF(S) allows for expressing knowledge
about the resources (identified via URI), and features a rich data-type library
(richer than OntoDLP), but, unlike OntoDLP, it does not provide any way to
extract new knowledge from the asserted one (RDFS does not support any “rule-
based” inference mechanisms nor query facilities).

The Ontology Web Language (OWL)[17] is an ontology representation lan-
guage built on top of RDFS. The ontologies defined in this language consist
of concepts (or classes) and roles(binary relations also called class properties).
OWL has a logic based semantics, and in general allows to express complex
statements about the domain of discourse (OWL is undecidable in general)[17].
The largest decidable subset of OWL, called OWL-DL, coincides, basically, with
SHOIN(D), an expressive Description Logic (DL)[18]. OWL is based on classi-
cal logic (there is a direct mapping from SHOIN to First Order Logic (FOL))
and, consequently, is quite different form OntoDLP, which is based on DLP.
Compared to OntoDLP, OWL misses, for instance, default negation, nonmono-
tonic disjunction, and inference rules.
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In sum, the strong point of OntoDLP, w.r.t. to other ontology representa-
tion languages, is the natural way in which it combines the most common ontol-
ogy definition constructs with a powerful logic programming language, including
rules, nonmonotonic disjunction, and default negation.

5 Conclusion

In this paper, we have presented the OntoDLP language, an extension of dis-
junctive logic programming with relevant object-oriented constructs, including
classes, objects, (multiple) inheritance, and types. By using an example, we have
described the syntax of the language, and shown its usage for ontology repre-
sentation and reasoning.

Importantly, we have provided also a concrete implementation of OntoDLP:
the OntoDLV system. OntoDLV is built on top of DLV (the state-of-the art DLP
system). It implements all features of OntoDLP, it also provides an advanced
visual-interface, and a powerful type-checking mechanism, supporting the user
for fast ontologies specification and errors detection.

The OntoDLV system is a valid support for the development of knowledge-
based applications. Indeed, even if OntoDLP has been released very recently, it
is already employed, playing a central role, in a couple of advanced applications
for information extraction and text classification: HiLEx [19] and OLEX [21].

Ongoing work concerns the enhancement of OntoDLV by extending its lan-
guage with new features such as optional and multi-valued attributes, a more
powerful forms of both intentional classes, and reasoning modules.
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A Disjunctive Logic Programming

In this section, we provide a brief introduction to the syntax and semantics of
Disjunctive Logic Programming; for further background see [11, 1].

Syntax. A disjunctive rule R is a formula:
a1 ∨ · · · ∨ an :− b1, · · · , bk, not bk+1, · · · , not bm.

where a1, · · · , an, b1, · · · , bm are atomsand n ≥ 0, m ≥ k ≥ 0. A literal is ei-
ther an atom a or its default negation not a. Given a rule r, let H(r) =
{a1, ..., an} denote the set of head literals, B+(r) = {b1, ..., bk} and B−(r) =
{not bk+1, ..., not bm} the set of positive and negative body literals, resp., and
B(r) = B+(r) ∪ B−(r). the set of body literals.

A rule r with B−(r) = ∅ is called positive; a rule with H(r) = ∅ is referred
to as integrity constraint. If the body is empty we usually omit the :− sign.

A disjunctive logic program P is a finite set of rules; P is a positive program if
all rules in P are positive (i.e., not -free). An object (atom, rule, etc.) containing
no variables is called ground or propositional.

Semantics. The semantics of a disjunctive logic program is given by its stable
models [22], which we briefly review in this section.

Given a program P, let the Herbrand Universe UP be the set of all constants
appearing in P and the Herbrand Base BP be the set of all possible ground
atoms which can be constructed from the predicate symbols appearing in P
with the constants of UP .

Given a rule r, Ground(r) denotes the set of rules obtained by applying all
possible substitutions σ from the variables in R to elements of UP . Similarly,
given a program P, the ground instantiation P of P is the set

⋃
R∈P

Ground(r).
For every program P, we define its stable models using its ground instantia-

tion P in two steps: First we define the stable models of positive programs, then
we give a reduction of general programs to positive ones and use this reduction
to define stable models of general programs.

A set L of ground literals is said to be consistent if, for every atom ℓ ∈ L,
its complementary literal not ℓ is not contained in L. An interpretation I for
P is a consistent set of ground literals over atoms in BP .A ground literal ℓ is
true w.r.t. I if ℓ ∈ I; ℓ is false w.r.t. I if its complementary literal is in I; ℓ

is undefined w.r.t. I if it is neither true nor false w.r.t. I. Interpretation I is
total if, for each atom A in BP , either A or not .A is in I (i.e., no atom in BP

is undefined w.r.t. I). A total interpretation M is a model for P if, for every
R ∈ P, at least one literal in the head is true w.r.t. M whenever all literals in
the body are true w.r.t. M . X is a stable model for a positive program P if its
positive part is minimal w.r.t. set inclusion among the models of P.

The reduct or Gelfond-Lifschitz transform of a general ground program P
w.r.t. an interpretation X is the positive ground program PX , obtained from
P by (i) deleting all rules R ∈ P whose negative body is false w.r.t. X and (ii)
deleting the negative body from the remaining rules.

A stable model of a general program P is a model X of P such that X is a
stable model of PX .


