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Abstract. We describe a relational framework that uniformly supports
formalization and automated reasoning in various propositional modal
logics. The proof system we propose is a relational variant of the classi-
cal Rasiowa-Sikorski proof system. We introduce a compact graph-based
representation of formulae and proofs supporting an efficient implemen-
tation of the basic inference engine, as well as of a number of refinements.

1 Introduction

In the last decades, relational formalization of many non-classical propositional
logics has been systematically and rigorously studied (see, for instance, [26, 28]).
Long-standing research and well established results indicate that standard rela-
tional structures can be considered as a common core supporting representations
of many non-classical propositional logics. In such an algebraic framework sev-
eral alternatives for automation of (relational) reasoning can be considered as
viable. For instance, to mention some of the approaches proposed in literature,
we have tableaux systems [17], Gentzen-style systems [23], systems à la Rasiowa-
Sikorski [29], display calculus [13], and equational proof systems [10].

Once a relational rendering of a modal theorem is obtained through a trans-
lation process, possibly together with the relational counterparts of the modal
axioms, a relational proof system can be exploited in order to mechanize modal
reasoning. This approach can be seen as alternative and complementary to the
common ad hoc direct inference methods (cf., e.g., [24]).

This paper mainly focuses on Rasiowa-Sikorski systems. The basic constituent
of a Rasiowa-Sikorski system is a collection of inference rules. Similarly to the
case of tableaux systems [5], given a theorem to be proved, (the search for) a
proof is developed through repeated applications of a set of decomposition rules.
Through these rules the solution of a problem is reduced to the solutions of
(syntactically) simpler sub-problems. The proof is completed whenever a suc-
cess condition becomes satisfied. Success situations are detected by means of
so called closure rules that, together with the decomposition rules, character-
ize the proof system. Dually with respect to tableaux systems, in a Rasiowa-
Sikorski system the goal consists in proving a formula to be tautological, instead
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of unsatisfiable. For this reason Rasiowa-Sikorski systems are sometimes called
dual-tableaux systems.

Let us consider any non-classical logic L. Whenever a translation method for
formulae of L into the relational calculus is known, proving a modal theorem ϕ of
L amounts to prove validity of its relational formulation tL(ϕ). Different trans-
lations are needed to deal with different logics since the proper (modal) axioms
characterizing the specific logic have to be reflected in the relational framework.
This usually corresponds to identify a collection C of constant relations to be
interpreted as relational counterparts of modal accessibility relations. Proper
modal axioms are then rendered by imposing relational axioms which restrain
the admitted interpretations of constants in C. Moreover, in the context of a
Rasiowa-Sikorski system, properties of relations in C can also be dealt with by
enriching the collection of inference rules of the system. Specific decomposition
rules and refined closure rules are then added to the basic inference system.

A goal of the research described here consists in the realization of a relational
Rasiowa-Sikorski system suitable to uniformly support modal reasoning for any
relationally expressible propositional logic. The duality results linking tableaux
and dual-tableaux constitute one of the starting points of this research. In devel-
oping the system we are going to describe, we fruitfully adapted and combined
several techniques and proof-strategies independently developed for tableaux
systems, as well as a compact representation for relational expressions akin to
Decision Diagrams. Such techniques, to the best of our knowledge, have never
been combined together in the realization of a (relational) deductive framework.

2 A relational logic for propositional non-classical logics

In this section we briefly describe a generic relational logic based on algebras
of relations constituting a common framework in which the relational rendering
of many non-classical propositional logics can be embedded and homogeneously
treated (several examples of such logics are given in Sec. 2.2).

In such a homogeneous framework, all these renderings share basic features:
formulae and accessibility relations are represented as binary relations; relational
constructs represent extensional and intensional operations; and the deductive
apparatus corresponds to a relational calculus.

Let us start by recalling some preliminary notions. Let D be a non empty
set. The full algebra of binary relations over D is the structure Re(D) = (℘(D×
D), ,∩,∪, U, Z, ; , †,^ , I,D). The elements of Re(D) are the subsets of D×D.
Further, (℘(D×D), ,∩,∪, U, Z) is a Boolean algebra and (℘(D×D), ; ,^ , I)
is a monoid with involution [1]. Notice that, for the sake of simplicity, we are
considering as primitive, or basic, all the relational constructs ,∩,∪, ; , †, and
^ as well as the constants U,Z, I,D. An alternative possibility could consist
in introducing a minimal set of primitive constructs (such as ,∩, ; ,^ , I , for
instance) and in defining the remaining ones in term of these.

Occasionally, we will enrich such a basic structure by considering a collection
of relational constants (representing as we will see, accessibility relations) and
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with a set of non-standard relational constructs not definable in terms of the ba-
sic ones. A distinction between basic and non-standard relational constructs can
be established by classifying a construct as basic if its semantics can be expressed
through a first-order sentence in three variables [34]. We will call non-standard
those constructs that are not expressible in three variables. Recall that estab-
lishing the 3-variable expressibility of a sentence is, in general, an undecidable
problem [34, 20]. Nevertheless, techniques can be designed to treat particular
classes of formulas [3]. Let L be a non-classical logic and RelL its relational ren-
dering. In what follows we introduce a common syntax and semantics for RelL
whereas in Sec. 3 we develop the corresponding deductive apparatus.

2.1 Syntax and semantics of RelL

Let V be a set of individual variables (denoted by u,w, x, y, z, or occasionally by
e, t, possibly subscribed), R a set of relational variables (P ,Q,R,. . . ), and C a set
of relational constants. A relational expression is any term generated from the
symbols in R ∪ C ∪ {U,Z, I,D} and the relational constructs. The collection of
all the relational expressions is denoted by E . As usual, given a binary relational

construct ◦, its dual � is defined as P �Q =DefP ◦Q (and similarly for monadic
constructs different from complementation).

A relational equation is a writing of the form R=Q, with R,Q ∈ E . Shorthand
notations for equalities of special kind are also possible, e.g.: PvQ↔DefP−Q=Z.

A relational formula is a writing of the form xϕy where ϕ ∈ E is a relational
expression and x, y ∈ V are individual variables. If ϕ ∈ R∪C∪{U,Z, I,D}, then
xϕy is said to be an atomic relational formula. Any atomic relational formula
xϕy and its complement xϕy are literals. A formula is compound if it is not
a literal. The leading construct of a compound formula xϕy is the dual of ◦ if
ϕ = ψ ◦ φ or ϕ = ◦ψ. While, it is ◦ if ϕ = ψ ◦ φ or ϕ = ◦ψ.

Relational formulae are interpreted in semantic structures of the kind M =
〈D,I〉 where D is a non-empty set and I is a function assigning:
• A binary relation over D to each relation symbol in R ∪ C ∪ {U,Z, I,D}.

In particular, U is interpreted as the universal relation, I as the identity, Z
as U , and D as I . Relational variables are interpreted as right-ideal relations.
(A relation R is right-ideal if R;U = R.)

• The intended interpretation to the primitive and defined constructs. (Con-
sidering, as usual, ∪ and † to be the duals of ∩ and ;, respectively.)

We call such structures, models of RelL. An evaluation (or assignment) A in M

is a function A : V → D. A relational formula xϕy of RelL is satisfied by M and
A if (xA, yA) ∈ ϕI . In this case we write M, A |= xϕy. The formula xϕy is true
in M if and only if for every evaluation A in M, it holds that M, A |= xϕy. A
formula xϕy of RelL is valid if it is satisfied in every model of RelL.

2.2 Relational formalizations of modal logics

In this section we recall the relational formalizations of various propositional
logics [26]. For each logic we outline a syntax-directed translation into the algebra
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Table 1. Lattice-based modalities: translations and axioms for constant relations

possibility 3 t(3χ) =Def61; S3; 62; t(χ) 6
^
1 ; R3; 6^

1 vR3 R3vS3; 6^
1

62; S3; 62 vS3 S3v 62; R3

necessity 2 t(2χ) =DefR2; t(χ) 61; R2; 61 vR2 R2v 61; S2

6
^
2 ; S2; 6^

2 vS2 S2vR2; 6^
2

sufficiency 22 t(22χ) =DefR22; 62; t(χ) 61; R22; 62 vR22 R22v 61; S22

6
^
2 ; S22; 6^

1 vS22 S22vR22; 6^
1

dual t(33χ) =Def61; S33 ; t(χ) 6
^
1 ; R33 ; 6^

2 vR33 R33vS33 ; 6^
2

sufficiency 33 62; S33 ; 61 vS33 S33v 62; R33

of relations enriched with a specific collection C of constants. Such constants are
often subject to a set of axioms restraining their admitted interpretations.

Mono-modal logics. This is the basic translation of (propositional) modal
formulae into relational terms. In this case C = {r}. The propositional connec-
tives and the necessity operator are so translated:

t(¬ψ) =Def t(ψ) t(ψ & χ) =Def t(ψ) ∩ t(χ)
t(3 ψ) =Def r ; t(ψ) t(pi) =Def p

′
i

where p′i ∈ R uniquely corresponding to the propositional variable pi (similar
rules are introduced for the other customary propositional connectives).

Multi-modal logic. These logics correspond to multi-modal frames con-
sisting of a relational system where C enjoys closure properties with respect
to relational constructs. Modalities are then of the form [R] and 〈R〉, where
R ∈ E [26]. The translation of modal operators is the same as in the case of
mono-modal logic. The differences between operators are articulated in terms of
the properties of the corresponding accessibility relations.

Lattice-based modal logics. Lattice-based modal logics have the oper-
ations of disjunction and conjunction and, moreover, each of them includes a
modal operator which can be either a possibility 3, or necessity 2, or sufficiency
22, or dual sufficiency operator 33 (see [8]). Notice that, since negation is not
available in these logics, both in the possibility–necessity and in the sufficiency–
dual-sufficiency pair, neither operator is expressible in terms of the other. We
can also consider mixed languages with any subset of these operators. For all
of these logics we have {61,62} ⊆ C. Moreover, 61 and 62 are assumed to be
reflexive and transitive and such that 61 ∩ 62= I . The translations of disjunc-
tion and conjunction are:

t(ψ ∨ χ) =Def 61; 62; (t(ψ) ∪ t(χ)) t(ψ & χ) =Def t(ψ) ∩ t(χ).
As regards the alternative modalities, Table 1 summarizes their translations.

Each modality is modeled in the relational framework by means of a pair of
constant relations subject to suitable axioms (also displayed in Table 1).

Temporal logics. We consider here the relational formalization of temporal
logics given in [27]. The modalities referring to states in the future are: Gφ (in-
terpreted as “φ will be always true in the future”); Fφ (“φ will be true sometime
in the future”); φ Uχ (Until: “there will be an instant in the future when χ is
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Table 2. Classification of basic relational formulae

Conjunctive formulae, α = xR∩Sy α1 = xRy α2 = xSy (∧)

α-formulae α = xR∪Sy α1 = xRy α2 = xSy (¬∨)

Disjunctive formulae, β = xR∪Sy β1 = xRy β2 = xSy (∨)

β-formulae β = xR∩Sy β1 = xRy β2 = xSy (¬∧)

β = xRy β1 = xRy (¬¬)

δα-formulae: δα = xR; Sy δ
α1
0 = xRz δ

α2
0 = zSy (∃∧)

δα = xR † Sy δ
α1
0 = xRz δ

α2
0 = zSy (¬∀∨)

where z is an existentially quantified variable (δα ≡ (∃z)(δ
α1
0 (z) ∧ δ

α2
0 (z)))

γβ-formulae γβ = xR; Sy γ
β1
0 = xRz γ

β2
0 = zSy (¬∃∧)

γβ = xR † Sy γ
β1
0 = xRz γ

β2
0 = zSy (∀∨)

where z is a universally quantified variable (γβ ≡ (∀z)(γ
β1
0 (z) ∨ γ

β2
0 (z)))

κ-formulae κ = xR^y κ1 = yRx

κ = xR^y κ1 = yRx

true and from now until then φ will be true”); Xφ (“φ will be true in the next
instant in time”). Analogous modalities are introduced for states in the past.

Relational translations of temporal formulae are expressed by considering an
accessibility relation r that links time instants:

t(Gφ) =Def r; t(φ) t(Fφ) =Def r; t(φ)
t(φ Uχ) =Def t(φ) U t(χ) t(Xφ) =Def t((φ & φ) Uφ)

Notice that in translating the modal operator U we introduced a new relational
construct (denoted, for simplicity, by the same symbol). Observe that this con-
struct is non-standard (in the sense of Sec. 2, page 3) since it cannot be defined
in terms of the basic relational constructs [27]. This is the intended interpreta-
tion of U: PUQ designates the binary relation consisting of all pairs 〈u, v〉 such
that there exists t such that 〈u, t〉 belongs to the accessibility relation r

=, 〈t, v〉
belongs to Q=, and for all w, if 〈u,w〉 ∈ r

= and 〈w, t〉 ∈ r
= then 〈w, v〉 ∈ P=.

We will discuss more on this aspect in Sec. 4.3.

Other propositional modal logics. Other modal logics for which it is pos-
sible to give a relational formalization are, among others: the logics of knowledge
and information described in [6], the logics with specification operators [25], the
logics with Humberstone operators [18], the logics with sufficiency operators [7].

2.3 Classification of relational formulae

In order to illustrate the deductive system and the related proof techniques and
heuristics in a more concise and clear way, we introduce a classification of rela-
tional formulae w.r.t. their leading construct. A basic (resp. non-standard) rela-
tional formula is a formula having a leading construct which is basic (resp. non-
standard). Basic relational formulae can be further classified by taking inspira-
tion from Smullyan’s uniform notation for first-order logic [33]. In fact, they can
be grouped into five categories according to the first-order characterization of
the relational constructs (cf. Table. 2).

5



Table 3. Basic decomposition rules

xαy

xα1y|xα2y

xβy

xβ1y

[xβ2y]

xδαy

xδ
α1
0 z, xδαy|zδ

α2
0 y, xδαy

xγβy

xγ
β1
0 w

wγ
β2
0 y

xκy

xκ1y

If the leading construct is extensional (i.e., ∪, ∩, ) then, in analogy with
Smullyan’s notation, the relational formula is classified as an α-formula if it in-
volves intersection as leading construct (or an analogous construct of “conjunc-
tive nature”, such as difference or complemented union). Conversely, a formula
is classified as β-formula if its leading construct is union (or another one of

“disjunctive nature”). Formulae of the form xRy are classified as β-formulae.

Observe that, the first-order formulation of a formula with leading operator ;
(such as xR;Sy) is of the form (∃z)(xRz∧zSy), where a conjunction occurs under
the scope of an existential quantifier. Dually, formulae with † as leading operator
(such as xR † Sy) present first-order equipollents of the form (∀z)(xRz ∨ zSy),
where a disjunction is universally quantified. From such perspective, ; and †
could be seen as compound operators (existential quantification+conjunction,
universal quantification+disjunction). Thus, in analogy with Smullyan’s uniform
notation, where existentially (resp. universally) quantified formulae are classified
as δ-formulae (resp. γ-formulae), we classify relational formulae with leading
operator ; (resp. †) as δα-formulae (resp. γβ-formulae).1 Complemented Peircean
constructs are classified analogously. Formulae of kind κ deal with conversion ^.

3 A Rasiowa-Sikorski proof system for relational logics

Proof development in usual Rasiowa-Sikorski systems proceeds by systematically
decomposing the (disjunction of) formula(e) to be proved till a tautological con-
dition is detected through a closure rule (examples of such systems are described
in [31, 28]). Analogously to [28], the relational proof system we present relies
upon a collection of decomposition rules for basic relational formulae and upon
a closure rule which takes care of axiomatic sequences such as xRy, xRy, and
xUy (described in Sec. 3.2). The basic decomposition rules of Table 3 have been
defined according to the classification of formulae given in Sec. 2.3.

The α- and β-rules are used to decompose conjunctive and disjunctive for-
mulae, respectively. (The square brackets in the β-rule indicate that the second
component, namely xβ2y may or may not be present.) The δα-rule decomposes
δα-formulae, whereas γβ-formulae are expanded by the γβ-rule. The individual
variable z introduced in the δα-rule is chosen among the individual variables
occurring in the proof. On the other hand, w in the γβ-rule is an individual

1 In what follows we feel free to use notations as δ-formula in place of δα-formula (and
similarly for δ-expression, δ-rule, and so on), to denote formulae, expressions, etc.,
having ; as leading construct.
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variable new to (the current branch of) the derivation. Note that such decom-
position rules reflect the duality of Rasiowa-Sikorski systems with respect to
tableaux systems [12].

The decomposition rules in Table 3 constitute a common core of any rela-
tional Rasiowa-Sikorski system. As mentioned, there are logics whose relational
translation may involve intensional operators not expressible by means of ba-
sic relational constructs. For instance, in temporal logics we introduced a new
construct, namely U as counterpart of the Until modal operators (pag. 4). In
cases such that, the decomposition rules from Table 3 do not suffice. In order
to manipulate these new constructs some ad hoc decomposition rules have to be
introduced. In particular, [27] proposes the following rule for U:

xPUQy

xrt, xPUQy | tPy, xPUQy | xru, urt, uPy, xPUQy
where t is chosen among the individual variables occurring in the proof and u is
an individual variable new to the current branch of the derivation.2

The introduction of this rule can be justified by considering its frame-based
semantics. In fact, we have this (binary) first-order formulation:

(∀x y)(xPUQy) ≡ (∀x y)(∃t)(xrt ∧ tQy ∧ (∀u)(xru ∧ urt) ⊃ uPy).
which translates in the above decomposition rule.

3.1 The proof construction

A Rasiowa-Sikorski derivation D for a disjunction of relational formulae S is
represented as a binary ordered tree whose nodes are labeled by disjunctions of
formulae.3 We call branch of D any maximal path in D. More formally:

Definition 1. Let S be a disjunction of relational formulae of RelL. A Rasiowa-
Sikorski derivation D for S is recursively defined as follows.

The tree with only one node labeled with S, is a derivation for S. Let D be a
derivation for S, θ a branch of D, N the leaf-node of θ. Then, the tree obtained
from D by applying a decomposition rule, as illustrated by items 1-6 below, is a
derivation for S. Let ϕ be a formula in N .

1. If ϕ is a β-formula xβy, add (N \{xβy})∪{xβ1y, xβ2y} as a successor of N ;
2. If ϕ is a κ-formula, xκy, add (N \ {xκy}) ∪ {yκ1x} as successor of N ;
3. If ϕ is an α-formula xαy, add (N\{xαy})∪{xα1y} and (N\{xαy})∪{xα2y}

as left and right successors of N , respectively;
4. If ϕ is a γβ-formula xγβy, add (N \ {xγβy})∪{xγβ1

0 w,wγ
β2

0 y} as successor
of N , where w is a variable new to θ;

5. If ϕ is a δα-formula xδαy, add N ∪ {xδα1

0 z} and N ∪ {zδα2

0 y} as left and
right successors of N , where z is chosen among the variables occurring in D;

6. If ϕ is a non-standard formula, extend θ according to the corresponding
specific decomposition rule.

2 Notice that the above decomposition rules originate three branches. Nonetheless, it
is easy to surrogate such triple-branching by a binary tree.

3 By abuse of notation, we often identify a node N with the disjuncts of its label.
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(1.) {x(Q∪(P ; R; S))∪(P † R; S))y}
| β

(2.) {xQy, xP ; R; Sy, xP † R; Sy}

| γβ

(3.) {xQy, xP ; R; Sy, xPe1, e1Re2, e2Sy}

�� @
@

@@

δα

(4.) {xQy, xPe1, xP ; R; Sy, xPe1, e1Re2, e2Sy}
δα

(5.) {xQy, e1R; Sy, xP ; R; Sy, xPe1, e1Re2, e2Sy}

�� δα

(6.) {xQy, e1Re2, e1R; Sy, xP ; R; Sy, xPe1, e1Re2, e2Sy}

@
@

@@

δα

(7.) {xQy, e2Sy, e1R; Sy, xP ; R; Sy, xPe1, e1Re2, e2Sy}

Fig. 1. Rasiowa-Sikorski proof for Example 1

3.2 Closure phase

The closure of a branch is determined by applying a closure rule. For instance,
we mentioned that a branch is declared closed whenever its leaf-node contains
a pair of the form xRy and xRy. The following definition summarizes, in more
generality, such closure condition by handling the properties of equality.

Definition 2. A node N is closed if one of the following conditions holds:

1. N contains the formulae x1Dx2, . . . , xh−1Dxh, y1Dy2, . . . , y`−1Dy`, x1Rz,
xhRy`, with z = y` (for some h, ` ≥ 1). In case R is a right-ideal atomic
relation, then it is not required that z = y` holds.

2. N contains the formulae x1Ixh, x1Dx2, . . . , xh−1Dxh (for some h ≥ 1).

Moreover, in order to take care of symmetry of equality, the distinction between
xiDxj and xjDxi in these conditions is considered immaterial. A node is atom-
ically closed if R is an atomic relation.

Notice that the basic closure conditions of usual relational Rasiowa-Sikorski sys-
tems, cf. [27], are instances of the above ones when putting h = ` = 1.

A derivation D for a disjunction of formulae S of RelL is satisfied by a model
M = 〈D,I〉 of RelL if, for every variable assignment A and branch θ of D, M

and A satisfy θ (and we write (M, A) |= θ). A model M and an assignment A
satisfy a branch θ if they satisfy each node of θ. A node N is satisfied by M

and A if at least one formula ϕ in N is satisfied by M and A. A branch θ in a
derivation is said to be (atomically) closed if its leaf-node is (atomically) closed.
A derivation D is (atomically) closed if all its branches are (atomically) closed.
A closed derivation for S is a proof of S.

Example 1. Consider the valid formula x(Q∪(P ;R;S))∪(P † R;S)y. Fig. 1 il-
lustrates a Rasiowa-Sikorski proof for it. The labels of the arcs indicate the
decomposition rules applied. In particular, node (2.) has been obtained from
node (1.) by applying the β-rule twice. Similarly, to obtain (3.), the γβ-rule has
been applied twice. Nodes (4.) and (6.) are closed because of the pairs of literals
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xPe1 and xPe1, and e1Re2 and e1Re2, respectively. Finally, the pair e2Sy and
e2Sy closes node (7.).

4 An efficient representation of formulae and proofs

Trees are the most natural structure to represent proofs in analytic systems such
as tableaux and Rasiowa-Sikorski (cf. Fig. 1). Indeed, they reflect the idea of re-
cursively decompose the formula to be proved till elementary contradictions (in
case of tableaux) or tautologies (in case of Rasiowa-Sikorski) are found. Never-
theless the frequent presence of redundant parts in the trees, makes the proof
search procedure highly inefficient in practice [4]. Therefore, the use of more
suitable data structures is required to construct efficient concrete provers.

In what follows we show how to represent relational formulae and Rasiowa-
Sikorski proofs by means of labeled acyclic graphs and describe a series of re-
finements on such basic framework. Such a representation is akin to Binary
Decision Diagrams and has several desirable properties when Boolean formulae
are processed: it maximizes structure sharing since common sub-formulae are
represented (and processed) once; it has unique (up to the ordering imposed on
labels of nodes) reduced canonical forms; and satisfiability and tautology check-
ing are easily performed on reduced canonical forms. As we will see, in order to
treat Peircean constructs (which involve implicit use of quantification), we need
to circumvent the limited expressive power of basic BDD-style representations.

4.1 From trees to graphs: structure sharing

Let us start by considering a simplified scenario where only Boolean constructs
(union, intersection, complement, etc) are involved. Thus, only α- and β-rules
can be applied to construct a proof for a given relational formula xRy: proving
that R=U amounts to fully decompose xRy by α- and β-steps to obtain a fully
expanded proof D and then to close each of its leaves by applying the closure
rule of Sec. 3.2. A similar situation arises while using BDDs in checking for
satisfiability of Boolean functions [2]. For this reason, the use of graph-based
representations (such as BDDs or Shannon graphs) have been proposed in the
context of tableaux systems (see, among others, [30, 32, 15]). We adopt a similar
representation for relational expressions.

Given a relational formula involving only Boolean constructs, by α- and β-de-
compositions, we obtain its representation as a (labeled) rooted directed acyclic
graph. Let us call such graph RDG (standing for relational decision graph).
Each non-leaf node n of an RDG has two outgoing edges labeled − and +,
respectively. Let us denote the corresponding sub-graphs by n− and n+, resp.
Moreover, let r(n) denote the formula labeling n. An example of RDG of an
atomic formula (xSy, in this case) is depicted in Fig. 2 (where 0 and 1 are
new symbols labeling the only two leaf-nodes). In general, an RDG of a given
relational formula is built up in syntax directed bottom-up process, from the
RDGs of its sub-formulae, by “replacement of leaves”. For instance, given the
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xSy

10

− +

xPy xQy

xSyxRy

10

−

+

−
+

−

+

−
+

Fig. 2. The RDGs for xSy and xP∪((Q∩R)∪S)y

RDGs for xRy and xQy, an RDG for x(Q∩R)y can be obtained by replacing
the 0-leaf of the former with the root of the latter and merging the two 1-leaves.
This corresponds to apply α-decomposition. Similarly, an RDG for x(Q∩R)∪Sy
is obtained replacing the 1-leaf of the RDG for x(Q∩R)y, with the root node of
the RDG for xSy (and merging the remaining identical leaves). This corresponds
to apply β-decomposition.

The major advantage of adopting such a representation is the maximal struc-
ture sharing it intrinsically provides. Indeed, in building up the RDG of a for-
mula, whenever a sub-formula occurs multiply, its sub-RDG is built only once.

An RDG obtained in this way fulfills these conditions: a) there are two leaves
only (i.e., 0 and 1); b) there are not two distinct non-leaf nodes n1, n2 such that
the sub-graphs rooted at n1 and n2 are isomorphic. On the other hand, at this
stage, we do not preclude nodes n such that n− = n+. (Hence, such RDG are not
guaranteed to be reduced in the sense of [2].) Moreover, we do not impose any
order on the (formulae labeling the) nodes of the RDG. We will deal with these
aspects in the sequel, while introducing a normalization procedure for RDGs.

We are left to deal with complementation of relations: given an RDG for
xRy, an RDG for xRy can be obtained by exchanging the two leaf-nodes.

Given an RDG, a 1-path is a path from the root node to the 1-leaf. Any
1-path p can be denoted as a sequence n1, s1, n2, s2, . . . , nk, sk,1 (for k ≥ 0),
where each symbol si is the label of the ith edge of p. The set r(p) of relational
formulae occurring on a 1-path p = n1, s1, n2, s2, . . . , nk, sk,1 is defined as:

r(p) = {r(ni) : si = +} ∪ {r(nj) : sj = −}.
A 1-path p is closed if r(p) is closed in the sense of Def. 2. Checking if a

relational formula xRy, involving only Boolean constructs, is valid amounts to
verifying that every 1-path p of an RDG for xRy is closed.

4.2 Dealing with Peircean constructs

The procedure described so far does not handle Peircean constructs. As men-
tioned, γ- and δ-decomposition rules correspond to universal and existential
quantifications. Hence dealing with them imposes going beyond the expressive
power of basic BDD-like representations.

Among the various approaches proposed in literature, we refine and adapt
to our context an interesting extension of un-ordered BDD proposed, for in-
stance, in [30, 32]. In particular, in [30] the authors propose a variant of a free-
variable tableaux system where universal quantification is handled by means of
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Fig. 3. RDGs for Example 2

a graph-nesting mechanism, while existential quantification is handled through
a preliminary transformation into Skolemized negative normal form.

Since, w.r.t. tableaux systems, we are facing a dual problem, (i.e., to prove
validity in place of unsatisfiability), we use such nesting mechanism to process
δ-formulae instead of γ-formulae. Notice also that we do not need to manipu-
late first-order formulae in their full generality, this because relational equalities
characterize a proper sub-language of first-order logic obeying significant re-
strictions [34]. This simplifies the treatment and originates a more profitable
and efficient usage of the graph-nesting technique. The basic idea consists in
allowing an RDG to label a node in another RDG. Whenever a δ-decomposition
is applied during the construction of an RDG, another RDG is constructed for
the δ-formula at hand. Such an ancillary RDG will be “nested” as a single node
(let us call δ-node a node of this kind) in the main RDG.

Example 2. Consider the formula of Example 1. A (nested) RDG for it is de-
picted in Fig. 3 (where for the sake of readability, we duplicated the 0-leaf and
the 1-leaf. Thicker lines indicate δ-nodes). Notice how the nesting mechanism
is exploited to translate the sub-expression P ;R;S: the formula x(P ; (R;S))y
corresponds to RDG1, while RDG2 is the auxiliary graph for p0(R;S)y. In the
main graph, two γ-decompositions (of the formula x(P † R;S)y) introduce the
fresh individual variables e3 and e4. (Compare this RDG with the tree in Fig. 1.)

In order to reflect the extension mechanism illustrated in Def. 1, any appli-
cation of a δ-rule must leave open the possibility of further δ-decompositions of
the same δ-formula. In each of these decompositions any of the individual vari-
ables occurring in the branch being extended may be used. Intuitively speaking,
in trying to close a 1-path p, we proceed by extending p with an instantiation
of one of its nested RDGs. Such an instantiation involves one of the individual
variables occurring in p. To prepare for this instantiation+extension step, when
a δ-node is created, a template for the corresponding (nested) RDG is built and
a “placeholder” is used as parameter (cf., p0 and p1 in Fig. 3). Such a placeholder
will be replaced during the extension step, by the individual variable selected
from those occurring in the path.

11
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Fig. 5. Initial graph proof for S = β1 ∪ . . . ∪ βn and δα- and γβ-decompositions

As regards γ-formulae, we proceed similarly to β-decomposition, with the
only difference that a freshly generated individual-variable symbol is introduced
(cf, Def. 1). This clearly corresponds to Skolemization and if a γ-decomposition
occurs within nested RDGs (i.e. within the scope of one or more δ-expressions),
the Skolem term will be parametric in all the corresponding placeholders.

Recall that, the term to be introduced by a γ-decomposition has to be chosen
among a finite set of individual variables. (In the case of tableaux systems such
term may be selected among any of the compound terms of the language of the
current branch. Such a language could be infinite.)

The remaining primitive Peircean construct, conversion, is eliminated during
the generation of the RDG by rewriting any formula of the form xR^y as yRx.

4.3 Non-standard relational constructs

Thanks to the use of nesting, it is possible to generalize RDGs in order to treat
any kind of construct, provided that its semantics can be given in terms of
a formula of binary predicate logic. As an example, let us consider the Until
operator of temporal logic and the corresponding relational construct U. It can
be characterized by the first-order formula xAUB y ≡ ∃t(xrt∧ tBy ∧ (∀u)(uAy∨
xru∨urt)), where r denotes a constant relation modeling world accessibility. The
structure of the formula suggests the structure of an RDG: we treat disjunctions
(resp. conjunctions) similarly to α-decompositions (resp. β-decompositions). The
RDG sought for is shown in Fig. 4. Whenever, in building up an RDG for a given
formula, the construct U has to be decomposed, a δ-node having the graph in
Fig. 4 as nested RDG is created.

Such a mechanism corresponds to use a sort of “macro expansion” of non-
standard constructs. In fact, the part of the graph related to the existentially
quantified variable t presents a structure similar to the graph generated by a δ-
decomposition (the only difference is in the occurrences of individual variables).

12



Conversely, the part of the graph related to the universally quantified variable u
presents a structure similar to the graph generated by a γ-decomposition. These
analogies allows us to reuse the very same machinery developed for basic Peircean
constructs to handle nested RDG originated by non-standard constructs.

5 Soundness and Completeness

In this section we briefly outline the ideas behind the proofs of soundness and
completeness, limiting ourselves to consider the graph-based version of the sys-
tem with basic rules only. A detailed treatment, including the missing proofs,
can be found in [9]. In Sec. 4 a syntax directed bottom-up process is outlined
to construct graph-based representations of Rasiowa-Sikorski proofs. This choice
is basically due to efficiency reasons, since it allows maximization of structure
sharing. Here, in order to make proofs of the soundness and completeness state-
ments simpler, we introduce a top-down recursive construction of the very same
graph-based proof.

Definition 3. Let S be a disjunction of formulae of RelL. A derivation G for
S is recursively defined as follows. The graph in Fig. 5 (with β1, . . . , βn the
disjuncts in S) is a derivation for S. Moreover, let G be a derivation for S,
then the graph G′, obtained from G by applying one of the decomposition steps
described in Sec. 4.1 and 4.2, as shown below, is a derivation for S. Let n be
any node in G labeled by ϕ.

1. If ϕ is a β-formula, replace n with its β-decomposition;
2. If ϕ is an α-formula, replace n with its α-decomposition;
3. If ϕ is a κ-formula, substitute ϕ with its component yκ1x;
4. If ϕ is a γβ-formula, replace n with its γβ-decomposition, with ej a variable

new to every 1-path containing n;
5. If ϕ is a δα-formula, add its δα-decomposition as successor of n, with the

placeholder pi replaced by any ei, chosen among the variables in G.

Soundness. The relational Rasiowa-Sikorski system with graph-based proof
representation is sound if every disjunction of relational formulae with a closed
derivation (graph) is valid. The statement can be proved by showing that preser-
vation of validity is an invariant property throughout the recursive graph con-
struction illustrated in Def. 3, and that the closure rule from Def. 2 “closes” only
1-paths p with tautological r(p).

Completeness. The system is complete if for every valid disjunction S of
relational formulae it is able to produce a finite closed RDG for S. As usual,
the statement is proved by exhibiting a fair proof-search procedure (such as the
one introduced in Sec. 6) that, in a deterministic way, builds a saturated RDG
for a disjunction of relational formulae S. A derivation G for S is propositionally
saturated if it is constructed out of the initial graph-proof for S by applying
only decomposition steps 1 − 4 from Def. 3, till all its nodes are labeled by
either atomic formulae or by δα-formulae. A δα-formula occurrence xδαy in G
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Table 4. Rewriting system for the normalization process

1) RDG(r(n), n−, n+) ; n− if n− = n+

2) RDG(r(n1), RDG(r(n2), n
−

2 , n
+
2 ), n

+
1 ) ; RDG(r(n1), n

−

2 , n
+
1 ) if r(n1) = r(n2)

3) RDG(r(n1), n
−

1 , RDG(r(n2), n
−

2 , n
+
2 )) ; RDG(r(n1), n

−

1 , n
+
2 ) if r(n1) = r(n2)

4) RDG(r(n1), RDG(r(n2), n
−

2 , n
+
2 ), n

+
1 ) ;

RDG(r(n2), RDG(r(n1), n
−

2 , n
+
1 ), RDG(r(n1), n

+
2 , n

+
1 )) if r(n1) � r(n2)

5) RDG(r(n1), n−

1 , RDG(r(n2), n−

2 , n+
2 )) ;

RDG(r(n2), RDG(r(n1), n
−

1 , n
−

2 ), RDG(r(n1), n
−

1 , n
+
2 )) if r(n1) � r(n2)

6) RDG(r(n), n−, n+) ; n− if r(n)=xUy

7) RDG(r(n), n−, n+) ; n+ if r(n)=xZy

8) RDG(r(n), n−, n+) ; n− if r(n)=xIx

9) RDG(r(n), n−, n+) ; n+ if r(n)=xDx

is fully expanded if, for every variable ei in the 1-paths of G containing xδαy

with a positive sign, the corresponding δα-decomposition graph (see Fig. 5)
instantiated to ei, is propositionally saturated and attached as a right successor
to xδαy. A derivation G for S is saturated if it is propositionally saturated and
each δα-formula occurring in it is fully expanded. Every 1-path on a saturated
derivation is said to be saturated. It can be proved that if p is a saturated open
1-path, then there exists a model not satisfying r(p) [9].

6 Towards an efficient implementation

In this section we describe a number of techniques we adopted in implementing
an automated Rasiowa-Sikorski deduction system. The system we are going to
delineate has been implemented in SICStus Prolog.

Ordering. Given a relational formula, the procedure outlined in Sec. 4
produces an RDG without imposing any order on the (atomic formulae labeling
the) nodes. Furthermore, it may be the case that the same formula labels two
distinct nodes in a path. We introduce now a normalizing procedure that, by
proceeding top-town, imposes a given order � on the nodes of the RDG. Such a
procedure is described as a term rewriting system (in the spirit of [16, 37]). The
rewriting process will continues until no further rewriting is applicable. An useful
piece of notation: let the term RDG(r(n), n−, n+) denote the RDG rooted in the
node n. The rewriting system is constituted of the rules 1)−5) in Table 4, where
� is any total ordering on the collection of relational atomic formulae. Notice
that all these rules preserve the closure property of the RDGs. Moreover, if all of
the 1-paths of the initial RDG can be closed because of pairs of complementary
formulae, then the normalization process yields an RDG made of a single 0-leaf.
This immediately certifies the initial formula to be tautological. The described
rewriting system can be enriched by adding additional rules (i.e. ,6) − 9) in
Table 4) to handle basic constants U,Z, I,D. In this way, the rewriting process
simplifies the RDG by removing those 1-paths which are tautological because of
atomic formulae of the forms xUy, xIx, etc.

To impose node ordering and maximal structure-sharing (even between iso-
morphic sub-graphs of different nested graphs), the normalization process is
recursively applied to each nested RDG.
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Remark 1. Two refinements often adopted in tableaux systems are the use of
lemmas and the imposition of some sort of regularity constraint on the applica-
tion strategy for decomposition rules [21]. These techniques have as counterpart,
in our system, the adoption of a graph-based representation where ordering and
maximal structure sharing are imposed.

Equality and symmetric or reflexive relations. The adoption of a
two-phases approach (i.e., a procedure to build-up the RDG coupled with a
normalizing phase), instead of developing a procedure to obtain an ordered RDG
directly from the formula, permits a simpler treatment of those relations subject
to specific properties or axioms. Examples are reflexivity and symmetry.

Let us start by considering any relational expression R which is known to
denote a symmetric binary relation, i.e., such that ∀x∀y(xRy → yRx). In this
case the label xRy be rewritten as yRx preserving the validity of the whole re-
lational expression. This fact justifies the introduction of the following rewriting
rule in the normalization procedure:

RDG(xRy, n−, n+) ; RDG(yRx, n−, n+) if x � y

where we consider the total order � as extended to the collection of all individual
variables. On the other hand, whenever a relation R is such that ∀x(xRx) holds,
we can apply the following rewriting rule:

RDG(xRy, n−, n+) ; n− if x = y

Clearly, these rules applies in the case of the constants I and D, as well.
Nevertheless, in the case of D more fruitful rewriting rules can be introduced:

RDG(xDy, n−, n+) ; RDG(yDx, n−, n+) if x � y

RDG(xDy, n−, n+) ; RDG(xDy, n−, n′) if y � x

where n′ is obtained from n+ by substituting each occurrence of y with x. For in-
stance, if x1 � · · · � xh � y1 � · · · � y`, such rules (in combination with the oth-
ers) rewrite the set {x1Dx2, . . . , xh−1Dxh, y1Dy2, . . . , y`−1Dy`, x1Ry1, xhRy`}
into {xhRy`, xhRy`}.

Remark 2. It is important to notice that, in virtue of this refinement of the
rewriting system, we can sensibly simplify the closure rule. Actually, we can
modify the closing conditions in Def. 2 by imposing h = ` = 1.

Proof-search procedure. Once an RDG is normalized, two situations may
arise. If the RDG is made of a single node, then establishing validity of the
initial formula xRy is immediate. Conversely, it might be the case that such
RDG contains a number of non-trivial 1-paths. In order to declare xRy valid,
each of them has to be closed. Checking all the 1-paths involves visiting the
whole (finite) RDG. For any 1-path p : n1, s1, n2, s2, . . . , nk, sk,1 let l(p) be
the set of formulae of r(p) restricted to the nodes of p that are not δ-nodes.
(Notice that, by the bottom-up procedure used to obtain the RDGs, l(p) is a set
of literals.) Moreover, let δ(p) be the set of δ-nodes ni, in p, such that si = +.
For any 1-path two situation are possible: i) l(p) satisfies a closure condition.
In this case p is declared closed. ii) l(p) does not satisfy any closure condition.
In this case closure may still be achievable by performing some extensions using
one or more nested RDG. Hence, the search procedure proceeds by selecting
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a δ-node m in δ(p) and an individual variable e among those occurring in the
path. Let pm be the placeholder of m. The 1-path p is extended with a copy of
the ancillary RDG of m, with e replaced for the placeholder pm. The extension
happens substituting the ending 1-leaf of p with the root of the selected RDG.
Such a step introduces a number of new 1-paths (all of them having p as prefix).
At this point the process (recursively) proceeds trying to close these new 1-paths.
The process continues, possibly by applying further extension steps, until, either
all 1-paths are declared closed; or no more extensions are possible; or some
termination condition is verified.

Clearly, suitable strategies and heuristics should be exploited to guide the
proof procedure. In particular, two questions must be answered each time an
extension step has to be performed: a) which δ-node is selected? And b) which
individual variable is selected? Since more than one δ-node may be necessary
in order to close a 1-path, any fair selection rule can be adopted. As regards
the selection of individual variables for repeated use of the same δ-node, we rely
once more on the order � and each time an extension step is performed the next
unused variable according to � is used.

It must be noted that Skolem terms may occur in nested RDG. Such terms
are parameterized by placeholders names. Hence each time an extension step
is performed, new individual variables (may) be introduced in the (extended)
1-path. Consequently, the search procedure is not guaranteed to terminate. This
phenomenon cannot be avoided, since establishing the validity of a relational for-
mula is, in general, undecidable. To avoid infinite computation we adopt bounded
depth-first iterative deepening [19].

Given a specific RDG, an effective approach in efficiently implementing the
proof-search procedure outlined so far consists in generating the Prolog code
which encodes the proof-search itself. In particular, each node n of the RDG
originates a Prolog clause which, during execution, calls the clauses correspond-
ing to n+ and n−. Clearly, the clause related to the 1-leaf of the RDG also
encodes the extension mechanism. Hence the proof of a modal theorem follows
these phases: a) the given formula is translated in relational form (Sec. 2.2); b) an
RDG for such form is generated (Sec. 4); c) the RDG is normalized (Sec. 6);
d) the normalized RDG is compiled into a Prolog program; e) the search for the
proof is done by executing such program.

Some concluding remarks about the graph representation: we conclude this
section by observing that our approach presents some differences w.r.t. the one
in [30] in at least two further aspects that have significant impact in the realiza-
tion of the proof-search procedure. First, we do not make use of free-variables,
even if, in principle, this is not precluded. Hence our system turns out to be
closer to ground tableaux systems that to free-variable ones. As a consequence,
we do not use any unification procedure to implement closure rules. Second,
we profitably impose ordering of nodes. This sensibly reduces the size of the
generated RDGs to be processed by a subsequent proof-search procedure.
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7 Conclusions and future works

The research we reported upon in this paper shows that the duality results hold-
ing between (ground) tableaux systems and Rasiowa-Sikorski systems, naturally
provide strong support to cross-fertilization between the two streams of research.
Actually, we explored just a small portion of the immense work and well estab-
lished research done in the context of tableaux systems, considering a rather
smooth application of such technology to the development of Rasiowa-Sikorski
systems. Besides tableaux technology, techniques and heuristics can be borrowed
from related fields such as automation of propositional logic, equational reason-
ing, term rewriting systems, semantic unification, theory reasoning, to mention
some. In particular, in this initial work, we adopted a representation akin to De-
cision Diagrams, in origin designed to implement propositional logics. Moreover,
we reported on the applicability of techniques developed for equality handling
and based on term rewriting rules.

Several steps in this direction of research have to be yet completed. For in-
stance, the theoretical basis of our system design are inspired to ground versions
of tableaux, but an interesting theme for further study would consist in investi-
gating the use of free variables in relational Rasiowa-Sikorski systems. In general,
free-variable tableaux systems can be implemented so to ensure greater efficiency,
w.r.t. ground tableaux (see [11] for an efficient treatment of the unification proce-
dure). It is reasonable that the use of free variables in Rasiowa-Sikorski systems
could be advantageous as well.

The system described in this paper can be seen as an alternative to other,
more traditional methodologies such as the ones reviewed in [14]. Comparisons
in term of proof complexity and efficiency are needed in order to identify those
cases where our deduction method behaves better (or worse) than others.

Most of the modal logics of interest are decidable. Decidability results con-
stitute a solid theoretical background for the development of attractive specific
inference tools for such logics. A challenging theme of research consists in de-
tecting under which conditions the decidability results for a non-classical logic
can be reflected in some decidability property of its relational counterpart. A
possibility could consist in identifying particular classes of deduction rules, to-
gether with a specific strategy in rule application, that ensures decidability in
the relational framework.

Finally, an extensive comparison has to be done with alternative approaches
and tools designed for relational and modal reasoning. Among the systems sup-
porting various forms of relational manipulation and reasoning we would like
to mention, RALF, RELVIEW, RALL, δRA, and ARA. References for most of
such systems can be found in [36]. (Among the tools based on Rasiowa-Sikorski
systems, we mention RelDT [22].) As regards systems expressively dedicated to
modal reasoning, references for most of them can be found in [35].
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reasoning with otter. In R. Goré, A. Leitsch, and T. Nipkow, editors, Automated

reasoning: First International Joint Conference, IJCAR 2001. Proceedings, vol-
ume 2083 of LNCS, pages 152–167. Springer, 2001.

[11] M. Giese. Proof Search without Backtracking for Free Variable Tableaux. PhD
thesis, Fakultät für Informatik, Universität Karlsruhe, July 2002.
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